
Improving Evolutionary Testing in the Presence of Function-Assigned Flags

Stefan Wappler

Technical University of Berlin

Ernst-Reuter-Platz 7

10587 Berlin, Germany

stefan.wappler@tu-berlin.de

André Baresel

QVI Tech GmbH

Ernst-Augustin-Str. 12

12489 Berlin, Germany

andre.baresel@qvitech.com

Joachim Wegener

Berner & Mattner

E.-v.-Kreibig-Str. 3

80807 Munich, Germany

joachim.wegener

@berner-mattner.com

Abstract

Evolutionary structural testing, an approach to automat-

ically generating relevant unit test cases, encounters dif-

ficulties when the tested software contains boolean vari-

ables. This issue, known as the flag problem, has been stud-

ied by many researchers. However, previous work does not

address the issue of function-assigned flags which consti-

tutes a special type of the flag problem that often occurs in

the context of object-orientation. This paper elaborates on

a new approach to the flag problem that can also handle

function-assigned flags while being applicable to the con-

ventional flag problem, as well. It relies on a code transfor-

mation that leads to an improved fitness landscape which

provides better guidance to the evolutionary search. We

present four case studies including a fitness landscape anal-

ysis and empirical results. The results show that the sug-

gested code transformation improves evolutionary struc-

tural testing in the presence of function-assigned flags.

1. Introduction

Evolutionary structural testing [5, 8, 11, 9, 10] has been

shown to be an effective approach to automatically generat-

ing test cases that achieve high code coverage. It interprets

the task of test case generation as a search problem to be

solved using an evolutionary algorithm.

However, it has turned out that the evolutionary search

might fail if the software unit under test makes use of par-

ticular code constructs. One of these code constructs is the

usage of flag (or boolean) variables within conditions. This

issue is known as the flag problem and has been studied by

various researchers (e.g. [2, 3, 1, 4, 6]).

However, although the efficacy of the proposed ap-

proaches could be demonstrated for various test objects,

their applicability is limited to flag problems that do not in-

volve function calls meaning that the flag value is assigned

the return value of a function. We call this code construct

function-assigned flag. Especially in the context of object-

orientation, function-assigned flags occur very frequently.

The help of the previous approaches to the flag problem

is very limited in these cases. Therefore, a more general

approach is demanded which is able to deal with function-

assigned flags.

This paper presents a novel approach to the flag prob-

lem that is also applicable when the flag value is assigned

via a function call. It also applies to object-oriented code

where the concept of using the boolean return value of a

method call as a predicate is widely used. We describe a

code transformation that replaces all boolean-type flag vari-

ables with real-type variables and introduces local fitness

functions. We demonstrate that the approach is successful

on the basis of four case studies using C and Java test ob-

jects. Finally, we present the results of experiments with

the test objects of the case studies. These results show that

the evolutionary test case generator was able to successfully

generate test cases for the transformed programs while it

was not for the original programs.

This paper is structured as follows: section 2 describes

the main idea of evolutionary structural testing, section 3

introduces the issue of function-assigned flags in more de-

tail, section 4 presents our new code transformation, and

section 5 investigates four case studies. section 6 concludes

the paper and highlights directions for future research.

2. Evolutionary Structural Testing

In the area of software testing, the process of generating

relevant test cases for a given software unit is considered

to be the most important task. Done manually, it is time-

consuming and error-prone; hence, it is very costly. Evo-

lutionary structural testing [5, 8, 11, 9, 10] is one approach

to automating the process of test case generation. The task

to generate appropriate input data that leads to the execu-

tion of a particular program element is formulated as an

optimization problem which is tried to be solved using an

evolutionary algorithm.

An evolutionary algorithm is a meta-heuristic optimiza-

tion technique that mimics the principles of the Darwinian

theory of biological evolution. Figure 1 shows the work-

flow of a simple evolutionary algorithm. At first, a set of

Initialization of candidate

solutions

Evaluation of new

candidate solutions

Selection of promising

candidate solutions

Crossover

Mutation

Termination

criterion met?

Result:

Global best solution

Y

N

Figure 1. Workflow of an evolutionary algo-
rithm

candidate solutions for the given optimization problem is

generated at random. This set is called population and will

be modified iteratively later on in order to find an ideal solu-

tion. In the next step, the candidate solutions are evaluated

using a fitness function. This function assigns each candi-

date solution a quality value which correlates to the ability

of the candidate solution to solve the optimization problem.

Since the creation of new individuals depends on the as-

signed fitnesses, the fitness function is the most critical part

of an evolutionary algorithm and decides on the success of

the optimization. Once the candidate solutions are evalu-

ated, they undergo two modification steps if no ideal so-

lution is found initially. These two modification steps are

crossover and mutation. For crossover, two candidate so-

lutions are selected according to their fitness. Those hav-

ing a better fitness are selected with a higher probability.

The selected candidate solutions are recombined in order

to produce two offspring candidate solutions that are simi-

lar to their “parents” and expected to solve the optimization

problem in a better way. The offspring candidate solutions

are then mutated meaning that some of its parts are slightly

changed at random. Finally, the new set of candidate solu-

tions is evaluated again. This cycle of crossover, mutation,

and evaluation, is repeated unless a termination criterion,

such as the ideal solution is found or particular resources

are exhausted, is satisfied.

When applied to evolutionary structural testing, the evo-

lutionary algorithm aims at generating a test case that covers

a particular program element, the so-called test goal. Rele-

vant program elements typically are statements or branches

of the program under test, depending on the used test ad-

equacy criterion. For instance, if the test case generator is

supposed to provide a set of test cases that reach high branch

coverage – as required by many industrial testing standards

–, an individual evolutionary search for a covering test case

for each program branch is carried out. The entirety of test

cases generated by the evolutionary algorithm is then even-

tually provided as final test suite.

Each test goal requires the definition of an individual

fitness function. It has proven of value to base the fitness

functions on the distance of the execution flow produced by

a candidate solution to the targeted program element. Two

metrics have become popular for defining this distance: ap-

proximation level and branch distance [11]. Approxima-

tion level is defined in terms of the control flow graph of

the program under test. It measures the number of poten-

tial problem nodes of the shortest path from the problem

node to the targeted program element where the problem

node is that node of the control flow graph at which exe-

cution diverged down a branch (the critical branch) which

makes it impossible to ever reach the target. Branch dis-

tance relates to the condition assigned to the problem node.

It expresses how “close” execution was to taking the oppo-

site branch and hence avoiding the critical branch. For each

relational operator occurring in a condition, a particular dis-

tance function will be applied [11]. For instance, in case of

a condition if (a==100) the distance function for the equal-

ity operator is defined as d = |a − 100|, mapped into the

range [0, 1]. The evolutionary search tries to minimize the

approximation level and branch distance where 0 indicates

that the candidate test case covered the test goal of interest.

3. The Problem of Function-Assigned Flags

This section describes the issue of the flag problem in

general and that of function-assigned flags in particular.

First, an overview of the flag problem and the proposed so-

lutions is given. Then, the problem of function-assigned

flags is focused on. We also show that previous approaches

do not handle function-assigned flags effectively.

3.1. The Flag Problem

The flag problem relates to program variables that are

used in a boolean manner and cannot be accessed from out-

side the program. The latter is especially true for local vari-

ables. The following listing shows a simple flag problem:

i n t func (i n t a)

{
i n t f l a g = 0 ;

i f (a == 0)

f l a g = 1 ;

i f (f l a g)

r e t u r n 0 ;

e l s e

r e t u r n 1 ;

}

In this program, the local variable flag is used as a boolean

variable that takes only the values 0 and 1. It cannot be ac-

cessed from outside the program since it is a local variable.

However, seen in the context of evolutionary structural test-

ing, the true branch of the condition if (flag) constitutes

a test goal for which a covering test case is hard to find

when using the traditional branch distance. This difficulty

is due to the nature of the distance function which is a binary

function in this case: either, flag is true, then, the branch

distance is 0.0; or, flag is false and hence the branch dis-

tance is 1.0. The fitness function for the test goal would not

provide any useful guidance to the evolutionary algorithm.

Any input value different from 0 would receive the same

(bad) fitness 1.0.

Various approaches have been proposed to address the

flag problem: the flag removal algorithm of Harman et al.

[4] relies on a code transformation that in principle substi-

tutes the flag within a condition by the flag-defining expres-

sion. Bottaci [3] describes the general idea of using the dis-

tance of the conditions that control a flag assignment as a

replacement distance for the distance of the condition that

involves the flag. He introduces additional variables stor-

ing these intermediate distance values. Baresel and Sthamer

[2] perform a static analysis in order to classify all oc-

curring flag assignments into the categories desired and

undesired. They include the conditions controlling the

assignments into the fitness calculation: the negated con-

ditions controlling the undesired assignments are added to

the flag condition which is used to calculate the branch dis-

tance. In [1], Baresel et al. deal with the issue of loop-

assigned flags. They also classify the flag assignments ac-

cording to desired and undesired. Additionally, they intro-

duce local fitness functions and additional local variables.

They reformulate the flag condition using the additional

variables. Liu et al. [6] introduce a fitness variable for each

flag variable - the value of which is calculated with the help

of aggregation rules. They also classify the flag assignments

according to desired and undesired. Whenever a flag con-

dition is to be satisfied, the fitness value of the additionally

introduced fitness variables is used.

McMinn and Holcombe [7] combine the idea of chaining

and evolutionary testing to cope with the problem of inter-

nal variables and internal states, including the flag problem.

A transitive static analysis identifies all statements that ma-

nipulate the variables controlling a flag assignment. Chains

of such definitions are considered systematically to define

the objective function that then rewards the execution of

definition statements that eventually facilitate the desired

flag assignment.

In general, most of the previous approaches incorporate

the knowledge of what a desired and what an undesired flag

assignment is into a code transformation or calculation rule.

They also require the conditions controlling the calculation

of a flag value to be present in the context of the considered

function meaning that the information as to which condi-

tion controls a flag assignment is statically accessible. As

we will see in the next section, these properties limit the ap-

plicability of the approaches when function-assigned flags

are involved.

3.2. Function-Assigned Flags

A function-assigned flag is a flag which receives its value

via a function call. The following two code fragments in-

clude both a simple function-assigned flag:

/ / f r a g m e n t A

i f (s t a c k . i s F u l l ())

/ / t a r g e t

/ / f r a g m e n t B

i n t DOOR CLOSED = i s d o o r c l o s e d () ;

i f (DOOR CLOSED)

/ / t a r g e t

Actually, no flag variable is involved in code fragment A.

However, one can think of an implicit local variable that is

assigned the return value of the isFull method. Function-

assigned flags occur relatively often in object-oriented pro-

grams. Using the boolean return value of a method call

directly as a predicate is a popular programming prac-

tice. Function-assigned flags also occur in procedural pro-

grams, especially when the programming language offers

the boolean data type. Code fragment B shows the integer

variable DOOR CLOSED used in a boolean manner.

However, previous approaches dealing with the flag

problem would not provide an improvement for evolution-

ary structural testing in these cases since they would not

change the fitness landscape. For instance, the approach of

[4] would transform code fragment B to the following:

i n t DOOR CLOSED = i s d o o r c l o s e d () ;

i f (i s d o o r c l o s e d ())

/ / t a r g e t

Besides the danger that the is door closed function pos-

sesses side effects and multiple calls might affect the state

of the system – leading in the worst case to a change in the

behavior of the system –, the transformed version does not

improve the fitness landscape. The approaches based on the

knowledge of desired and undesired flag assignments would

either not have such information available or need to per-

form a possibly transitive analysis exceeding the function

boundary. However, in the context of object-orientation, an

extended static analysis of flag variable assignments tends

to be hindered due to the dynamic function binding (poly-

morphism), meaning that it is not always apparent which

predicate is to be used as a replacement for the flag condi-

tion. This information is available at runtime of the program

only when the effective method binding will be detected.

For instance, consider the following two implementations

of the isFull method of two stack classes:

c l a s s S i m p l e S t a c k implemen t s I S t a c k {
. . .

b o o l e a n i s F u l l () {
i f (e l e m e n t s . s i z e () == MAX SIZE)

r e t u r n t r u e ;

e l s e r e t u r n f a l s e ;

}
}

c l a s s E x t e n d e d S t a c k implemen t s I S t a c k {
. . .

b o o l e a n i s F u l l () {
i f (k e e p I n L i m i t ())

i f (e l e m e n t s . s i z e () == MAX SIZE)

r e t u r n t r u e ;

e l s e r e t u r n f a l s e ;

e l s e r e t u r n f a l s e ;

}
}

The first class, SimpleStack, compares the number of cur-

rently stored elements to a maximum size bound in order to

calculate the return value of method isFull. The second

class, ExtendedStack, allows exceeding the maximum

size unless it is configured to keep the size within the limit.

With respect to code fragment A, it depends on the run-

time type of variable stack – which is supposed to be either

SimpleStack or ExtendedStack – which predicates must

be incorporated into the flag fitness calculation: in the first

case, the predicate (elements . size ()==MAX SIZE) is relevant,

whereas in the latter case, both predicates (keepInLimit ()) and

(elements . size ()==MAX SIZE) are relevant.

The applicability of the chaining approach to object-

oriented software is hindered by dynamic binding and by

the fact that it does not regard the object identities for which

the definitions of relevant variables occur.

4. A New Code Transformation

Code transformations are a means to creating a modi-

fied version of a given program with the intention that the

modified version is more suited for a particular purpose. In

the context of evolutionary testing, several code transfor-

mations have been suggested. The purpose of these trans-

formations is to provide better guidance to the evolutionary

search for appropriate test data since the transformed pro-

gram is supposed to imply a smoother fitness landscape that

possesses fewer plateaus, less discontinuous changes and

less local optima than the fitness landscape implied by the

original program. A code transformation consists of the ap-

plication of a set of transformation rules, so-called tactics.

In the following, we describe the 3 tactics that constitute our

suggested transformation.

4.1. Tactic 1: Branch Completion

This tactic completes all ”invisible” else branches of all

conditions and adds tautological flag assignments. Table

1 shows a sample program on the left. On the right, it

shows the same program after tactic 1 has been applied. All

branches have been completed and tautological assignments

of the flag under question have been inserted. The intention

of this tactic is to make a flag assignment occur regardless

of the control path taken during execution of the program.

This tactic in combination with tactic 3 ensures that a guid-

ing distance value can always be calculated. The scope of

original program tactic 1 applied
void

func1 (i n t a , i n t b)

{
i n t f l a g = 0 ;

i f (a == 0)

f l a g = func2 (b) ;

i f (f l a g)

/ / t a r g e t

}

i n t func2 (i n t b)

{
i f (b==0)

re turn TRUE;

e l s e

re turn FALSE ;

}

void

func1 (i n t a , i n t b)

{
i n t f l a g = 0 ;

i f (a == 0)

f l a g = func2 (b) ;

e l s e

f l a g = f l a g ;

i f (f l a g)

/ / t a r g e t

}

i n t func2 (i n t b)

{
i f (b==0)

re turn TRUE;

e l s e

re turn FALSE ;

}

Table 1. tactic 1

this tactic are all conditions that control a flag assignment.

If there are nested conditions, all parent conditions are also

considered and their respective else branches are also ex-

panded.

4.2. Tactic 2: Data Type Substitution

This tactic substitutes the data type boolean (or int when

used in a boolean manner) with the data type double in all

flag declarations. This comprises not only local variable

declarations but also the return type of functions that are

supposed to return a flag (boolean) value. The latter occurs

quite often with the object-oriented paradigm. For exam-

ple, the use of is∗ methods or has∗ methods is relatively

common.

The data type substitution is the most essential tactic

of our code transformation. It assumes the value 1.0 to

be “maximum true” and the value −1.0 to be “maximum

false”. Positive values indicate that the flag is true whereas

negative values indicate that it is false. By convention, 0
is considered to be a positive value. The flag’s amount ex-

presses how far it is away from being the opposite value.

For example, a flag value of −0.5 indicates that the flag is

false and is 0.5 “away” from being true. The distance that

the flag value represents is later used to calculate the fitness

value. The gradual values (that substitute true or false)

produce a smooth fitness landscape which guides the evolu-

tionary search well as opposed to the original fitness land-

scape with the large boolean plateau.

The data type substitution also requires that all condi-

tions involving the flag are modified. In case of a compar-

ison of the flag value to true, e.g. (flag == true), the pred-

icate would be changed to (flag >= 0). Hence, the mod-

ified predicate makes use of a relational operator defined

for real values instead of the equality operator defined for

boolean values. Analogously, a comparison to false would

be changed to (flag < 0). Note that short-hand predicates,

such as (flag) would be completed to (flag == true)
first before applying the modification.

The tactic also demands a special treatment of the nega-

tion operator. All occurrences of it are replaced by the −
operator which is the negation operator for real values. For

instance, a condition if (! flag) would then be modified to

if (−flag >= 0)
1.

4.3. Tactic 3: Local Instrumentation

The local instrumentation is intended to assign gradual

distance values to the flag variables. Therefore, each right-

hand operator of a flag assignment will be instrumented

meaning that the actual right-hand expression is replaced by

a call to a distance function. Table 3 shows the application

of this tactic. As can be seen, the constants have been re-

placed by calls to function dist which returns the distance

for the expression passed to it. The angle brackets used

for the second argument passed to the dist function should

mean that the formal expression as well as the actual values

of the concerned variables are passed. This short-hand no-

tation will be used throughout the remainder of this paper.

The call of func2 has been replaced by a call to function

map.

The following listing shows the pseudo-code of the dist

function.

1The case of a zero flag value requires special treatment: the minimum

step width value of the data type is added to the flag value before negation.

tactic 1 applied + tactic 2 applied
void

func1 (i n t a , i n t b)

{
i n t f l a g = 0 ;

i f (a == 0)

f l a g = func2 (b) ;

e l s e

f l a g = f l a g ;

i f (f l a g)

/ / t a r g e t

}

i n t func2 (i n t b)

{
i f (b==0)

re turn TRUE;

e l s e

re turn FALSE ;

}

void

func1 (i n t a , i n t b)

{
double f l a g = −1;

i f (a == 0)

f l a g = func2 (b) ;

e l s e

f l a g = f l a g ;

i f (f l a g >= 0)

/ / t a r g e t

}

double func2 (i n t b)

{
i f (b==0)

re turn 1 ;

e l s e

re turn −1;

}

Table 2. tactic 2

tactic 2 applied + tactic 3 applied
void

func1 (i n t a , i n t b)

{
double f l a g = −1;

i f (a == 0)

f l a g = func2 (b) ;

e l s e

f l a g = f l a g ;

i f (f l a g >= 0)

/ / t a r g e t

}

double func2 (i n t b)

{
i f (b==0)

re turn 1 ;

e l s e

re turn −1;

}

void

func1 (i n t a , i n t b)

{
double f l a g = −1;

i f (a == 0)

f l a g = map (

func2 (b) ,

2) ;

e l s e

f l a g = d i s t (f l a g ,

<a==0>, 1) ;

i f (f l a g >= 0)

/ / t a r g e t

}

double func2 (i n t b)

{
i f (b==0)

re turn d i s t (1 ,

<b ==0 > ,1);

e l s e

re turn d i s t (−1 ,

<b ==0 > ,1);

}

Table 3. tactic 3

d o u b l e d i s t (d o u b l e a s s i g n e d V a l u e , e x p r e s s i o n exp ,

i n t n e s t i n g L e v e l) {
d o u b l e d i s t a n c e = b r a n c h d i s t (exp) ;

d i s t a n c e = map (d i s t a n c e , n e s t i n g L e v e l) ;

i f (a s s i g n e d V a l u e < 0)

d i s t a n c e = −d i s t a n c e ;

r e t u r n d i s t a n c e ;

}

Initially, the conventional branch distance will be calculated

based on the passed expression. This calculation depends

on the applied relational operator; for each operator, a par-

ticular distance function is designed [11]. Then, the dis-

tance is mapped to a particular range using the map func-

tion. This function realizes the idea of interval bisection

which can be regarded as the inversion of the approximation

level approach. Interval bisection allows integrating multi-

ple information into one real value. In our case this informa-

tion consists of the actual branch distance of the condition

that controls the flag assignment and the nesting level. The

nesting level of a statement corresponds to the number of

conditions that control this statement. We use the nesting

level instead of the approximation level since the latter can-

not be calculated for the local fitness function unambigously

using static analysis. This is due to the dynamic function

binding as mentioned in section 3.2. The number of nesting

levels may differ from function call to function call depend-

ing on how many levels the called function possesses.

Formula 1 shows the relationship between the orig-

inal distance (dorig) and the resulting mapped distance

(dmapped) where l is the nesting level. The map function

implements this formula.

dmapped = sign(dorig)
1 + |dorig|

2l
(1)

We will explain the idea of interval bisection using an ex-

ample. Test data for testing func1 consists of a pair (a, b)
of integer input data. Table 4 shows the nesting level,

the branch distance, the flag value, and a graphical repre-

sentation of the absolute amount of the flag value (called

interval) that the test inputs (1, 1), (1, 0), (0, 1), and (0, 0)
would achieve when being used as inputs for func1. The

(a,b) nesting

level

branch

distance

flag value interval

(1,1) 1 0.0005 -0.5002 0 10.5002

(1,0) 1 0.0005 -0.5002 0 10.5002

(0,1) 2 0.0005 -0.3751 0 10.3751

(0,0) 2 0.0005 +0.3750 0 10.3750

Table 4. Example test inputs for func1 and the

resulting flag value

test inputs (1, 1) and (1, 0) do not satisfy the first condi-

tion of func1, hence leading to the traversal of the alterna-

tive branch and achieving nesting level 1. The branch dis-

tance 0.0005, calculated by the appropriate distance func-

tion [11], indicates how close execution was to evaluating

the first condition to true. The flag value is negative in

these cases indicating a false flag outcome. The corre-

sponding intervals in table 4 show a solid lower half which

can be regarded as a reserved area for higher nesting levels.

The branch distance of 0.0005 was mapped to the upper

half, resulting in the absolute flag value 0.5002. The test in-

put (0, 1) satisfies the first condition of function func1 and

leads to the traversal of the alternative branch of the condi-

tion in function func2, hence achieving a nesting level of

2. The miss of the true branch of this condition is taken

into account by the branch distance of 0.0005. As the in-

terval shows in this case, the lower part is bisected as com-

pared to the first two intervals, and the branch distance is

mapped into the upper one of these new halfes. Finally, test

input (0, 0) satisfies both conditions and leads to an assign-

ment of true to the flag variable. Therefore, the sign of the

flag value is positive, indicating the true value. The abso-

lute value of the flag indicates how close execution was to

avoiding the true outcome.

5. Case Studies

In this section, we investigate four test objects in more

detail in order to demonstrate the suggested code transfor-

mation. The first two case studies, simple flag and nested

flag, include a simple flag problem. We include them to

show that the transformation also works for simple flag

problems. The third and fourth case studies, function-

assigned flag and a real-world example, include function-

assigned flags. In the following, we describe the test ob-

jects in short and present both the original program and the

transformed program. For each program, we show the fit-

ness landscape for the two test goals that a flag condition

controls (the true branch (denoted as target A) and the false

branch (denoted as target B)).

5.1. Simple Flag

The simple flag represents a single flag assignment con-

trolled by an atomic condition. No function call is involved

in the flag assignment. Table 5 shows the original program

on the left, and the transformed program on the right. As the

table shows, the fitness landscape for target A consists of a

huge plateau that does not provide useful guidance as op-

posed to the smooth landscape produced by the transformed

version.

The landscapes for target B are very similar: both pos-

sess exactly one peak at point 0, the only point where the

original program transformed program
vo id s i m p l e f l a g (i n t a)

{
i n t f l a g = 0 ;

i f (a == 0)

f l a g = 1 ;

i f (f l a g)

/ / t a r g e t A

e l s e

/ / t a r g e t B

}

vo id s i m p l e f l a g t (i n t a)

{
d o u b l e f l a g = −1;

i f (a == 0)

f l a g = d i s t (1 , <a == 0> , 1) ;

e l s e

f l a g = d i s t (f l a g , <a == 0> , 1) ;

i f (f l a g >= 0)

/ / t a r g e t A

e l s e

/ / t a r g e t B

}

fi
tn

e
s
s

a

Target A

fi
tn

e
s
s

a

Target B

fi
tn

e
s
s

a

Target A

fi
tn

e
s
s

a

Target B

Table 5. simple flag

test goal is not achieved. The landscape of the original

program is not problematic since the false branch is easily

reachable.

5.2. Nested Flag

The nested flag contains a flag assignment that occurs

when two conditions are both satisfied. Table 6 shows the

programs and fitness landscapes related to this test object.

The fitness landscape of the original program consists of a

single plateau with one hole at the optimum position [0, 0]
for target A. In contrast, the landscape of the transformed

program provides helpful guidance to the search algorithm.

It guides the search to first let variable a be 0, and afterwards

let variable b be 0. Like for the simple flag, target B is

unproblematic.

5.3. Function-Assigned Flag

This test object is similar to the nested flag test object.

Here, the nested condition has been moved into an extra

function called callee. Table 7 shows the programs and fit-

ness landscape for this test object. It can be seen that the

mapping of the returned fitness value leads to a gradual fit-

ness landscape without plateaus. The function call does not

imply any unfavorable information loss.

5.4. Real-World Flag Example

We applied the code transformation to class Stack writ-

ten in Java. This class implements a simple stack allow-

ing to add and remove elements and to query whether it is

empty or full. The maximum capacity of the stack has been

set to 10 elements which is an arbitrary choice. The follow-

ing listing shows the source code of class Stack, followed

by the corresponding transformed version.

p u b l i c c l a s s S t a c k {
p r i v a t e s t a t i c i n t MAX ELEMENTS = 1 0 ;

p r i v a t e O b j e c t [] e l e m e n t s ;

p r i v a t e i n t f r e e I n d e x ;

p u b l i c S t a c k () {
e l e m e n t s = new O b j e c t [MAX ELEMENTS] ;

f r e e I n d e x = 0 ;

}
p u b l i c vo id add (O b j e c t e l e m e n t) {

i f (i s F u l l ()) th row new E x c e p t i o n () ;

e l e m e n t s [f r e e I n d e x ++] = e l e m e n t ;

}
p u b l i c O b j e c t removeTop () {

i f (i sEmpty ()) throw new E x c e p t i o n () ;

r e t u r n e l e m e n t s[−− f r e e I n d e x] ;

}
p u b l i c b o o l e a n i s F u l l () {

i f (f r e e I n d e x >= MAX ELEMENTS) r e t u r n t r u e ;

e l s e r e t u r n f a l s e ;

}
p u b l i c b o o l e a n isEmpty () {

i f (f r e e I n d e x == 0) r e t u r n t r u e ;

e l s e r e t u r n f a l s e ;

}
}

p u b l i c c l a s s S t a c k t {
/ / a t t r i b u t e s and c t o r l i k e o r i g i n a l S t a c k

p u b l i c vo id add (O b j e c t e l e m e n t) {
i f (i s F u l l () >= 0) throw new E x c e p t i o n () ;

e l e m e n t s [f r e e I n d e x ++] = e l e m e n t ;

}

original program transformed program
vo id n e s t e d f l a g (i n t a , i n t b)

{
i n t f l a g = FALSE ;

i f (a == 0)

{

i f (b == 0)

f l a g = TRUE;

}

i f (f l a g)

/ / t a r g e t A

e l s e

/ / t a r g e t B

}

vo id n e s t e d f l a g t (i n t a , i n t b)

{
d o u b l e f l a g = −1;

i f (a == 0)

{
f l a g = d i s t (f l a g , <a==0>, 1) ;

i f (b == 0)

f l a g = d i s t (1 . 0 , <b==0>, 2) ;

e l s e

f l a g = d i s t (f l a g , <b==0>, 2) ;

}
e l s e

f l a g = d i s t (f l a g , <a==0>, 1) ;

i f (f l a g >= 0)

/ / t a r g e t A

e l s e

/ / t a r g e t B

}
Target A

a

b

fitness

Target B

a

b

fitness

Target A

a

b

fitness

Target B

a

b

fitness

Table 6. nested flag

original program transformed program
i n t c a l l e e (i n t b)

{
i f (b == 0)

r e t u r n TRUE;

e l s e

r e t u r n FALSE ;

}

vo id f a f l a g (i n t a , i n t b)

{
i n t f l a g = FALSE ;

i f (a == 0)

f l a g = c a l l e e (b) ;

i f (f l a g)

/ / t a r g e t A

e l s e

/ / t a r g e t B

}

d o u b l e c a l l e e t (i n t b)

{
i f (b == 0)

r e t u r n d i s t (1 . 0 , <b==0>, 1) ;

e l s e

r e t u r n d i s t (0 . 0 , <b==0>, 1) ;

}

vo id f a f l a g t (i n t a , i n t b)

{
d o u b l e f l a g = FALSE ;

i f (a == 0)

f l a g = map (c a l l e e t (b) , 2) ;

e l s e

f l a g = d i s t (f l a g , <a==0>, 2) ;

i f (f l a g >= 0)

/ / t a r g e t A

e l s e

/ / t a r g e t B

}
Target A

a

b

fitness

Target B

a

b

fitness

Target A

a

b

fitness

Target B

a

b

fitness

Table 7. function-assigned flag

p u b l i c O b j e c t removeTop () {
i f (i sEmpty () >= 0) throw new E x c e p t i o n () ;

r e t u r n e l e m e n t s[−− f r e e I n d e x] ;

}
p u b l i c d o u b l e i s F u l l () {

i f (f r e e I n d e x >= MAX ELEMENTS)

r e t u r n T . d i s t (T . TRUE,

<f r e e I n d e x >=MAX ELEMENTS>, 1) ;

e l s e r e t u r n T . d i s t (T . FALSE ,

<f r e e I n d e x >=MAX ELEMENTS>, 1) ;

}
p u b l i c d o u b l e isEmpty () {

i f (f r e e I n d e x == 0)

r e t u r n T . d i s t (T . TRUE,

<f r e e I n d e x ==0>, 1) ;

e l s e r e t u r n T . d i s t (T . FALSE ,

<f r e e I n d e x ==0>, 1) ;

}
}

Note that the transformation also modified the return types

of the two methods. Also note that the methods provided by

class T , which appears in the transformed methods, imple-

ment the same algorithms as described in section 4.3.

We do not present a visualization of the fitness land-

scapes since they are high-dimensional and are not based

on Euclidean scales. However, the experimental results

provided in the next section show that the transformation

created fitness landscapes that helped finding covering test

cases.

5.5. Experimental Results

We performed a series of experiments with the described

case studies for the purpose of empirical validation. We

used the DaimlerChrysler evolutionary testing system [11]

to carry out the experiments for the test objects written in C.

For the experiments with the Java test object, we used the

DaimlerChrysler prototypic Java test system [10].

We ran two series of experiments for each test object:

once, we used the original version and repeated the gener-

ation process 10 times; then, we used the transformed ver-

sion with the same number of repetitions. We restricted the

value range for integers to [−10e5,+10e5].

Table 8 shows the results of the experiments. We only

report on the true branch of the flag condition (target A; for

Stack the first true branch of method add). The first col-

umn names the test objects. The second and fourth column

shows the success rate (SR) of the 10 runs. Success rate

is the quotient of the number of successful runs and the to-

tal number of runs (i.e. 10). The third and fifth column

shows the average number of fitness function evaluations

(FE). The value in parenthesis is the standard deviation. We

configured the evolutionary search to terminate at least after

200 generations. In case of the procedural test objects, the

evolutionary algorithm used 240 individuals within 6 sub-

populations and a generation gap of 0.9. In case of the Stack

test object, the search employed 50 individuals. These set-

tings have turned out to be adequate during preceding exper-

iments. They explain the difference between the worst-case

evaluation values of the procedural and object-oriented test

objects in the second column. As the table shows, the test

test object
original version transformed version

SR FE (σ) SR FE (σ)

simple flag 0 43224 (0) 1 2694 (919)

nested flag 0 43224 (0) 1 23661 (5794)

f.-assigned flag 0 43224 (0) 1 20800 (4904)

Stack 0 10000 (0) 1 1261 (786)

Table 8. experimental results

systems were not able to generate a test case for covering

the interesting branches in case of the original programs. In

contrast, a covering test case was found in all cases when

the transformed program was being used.

We also analyzed the development of the fitness values

over the generations for the interesting test goals in order

to examine whether the code transformation enabled the

evolutionary algorithm to actually perform an optimization,

and, if it does, how the evolutionary search behaves. Fig-

ures 2 to 5 show the best fitness values over the generations

for the 10 runs. The thick graphs represent the best fitness

-5e-005

 0

 5e-005

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0 20 40 60 80 100 120 140 160 180 200

b
e
s
t
fi
tn

e
s
s

generation

Figure 2. Fitness development for simple flag

-5e-005

 0

 5e-005

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0 20 40 60 80 100 120 140 160 180 200

b
e
s
t
fi
tn

e
s
s

generation

Figure 3. Fitness development for nested flag

averaged over the 10 runs. It can be observed that the fit-

ness values incrementally improve which indicates that an

-5e-005

 0

 5e-005

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0 20 40 60 80 100 120 140 160 180 200

b
e
s
t
fi
tn

e
s
s

generation

Figure 4. Fitness development for function-
assigned flag

-5e-005

 0

 5e-005

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0 20 40 60 80 100 120 140 160 180 200

b
e
s
t
fi
tn

e
s
s

generation

Figure 5. Fitness development for Stack

optimization process took place. In case of the Stack test

object, the initial fitness improvements are very small and

cannot be easily seen in the figure. The final jumps of each

graph of the single runs are due to the change of the sign of

the flag value: once the last relevant condition is satisfied,

the sign of the flag value is inverted. Consequently, the dis-

tance function of the >= operator returns the distance value

0, causing the best fitness to immediately change to 0.

6. Conclusion and Future Work

This paper presented a code transformation that im-

proves evolutionary structural testing in the presence of

function-assigned flags. Flags are an obstacle to the evolu-

tionary search since they lead to plateaus in the fitness land-

scape that might not provide sufficient guidance in finding

an optimum solution. One essential tactic of the transforma-

tion is to substitute boolean variables by double-type vari-

ables. Local fitness functions are used to provide gradual

distance values. The suggested transformation is applicable

to procedural and object-oriented software. On the basis of

4 case studies, we demonstrated the efficacy of the transfor-

mation. In experiments, the evolutionary search was able to

find covering test cases for the transformed programs while

it failed to do so for the original programs.

In general, we expect the presented transformation ap-

proach to be applicable to and helpful for the major-

ity of flag problems, especially in the context of object-

orientation. However, we have not investigated its suit-

ability in case of neither serially-assigned flags nor loop-

assigned flags in more detail. Additionally, the approach

might benefit from further experimentation with more test

objects and their analysis.

7. Acknowledgement

We would like to thank Harmen Sthamer for the valuable

comments and discussions. This work was supported by EU

grant 33472 (EvoTest).

References

[1] A. Baresel, D. Binkley, M. Harman, and B. Korel. Evo-

lutionary testing in the presence of loop-assigned flags: A

testability transformation approach. In ISSTA ’04: Proceed-

ings of the 2004 ACM SIGSOFT international symposium

on Software testing and analysis, July 2004.
[2] A. Baresel and H. Sthamer. Evolutionary testing of flag

conditions. In Proceedings of the Genetic and Evolution-

ary Computation Conference (GECCO), pages 2442–2454,

July 2003. July 2003.
[3] L. Bottaci. Instrumenting programs with flag variables for

test data search by genetic algorithms. In Proceedings

of the Genetic and Evolutionary Computation Conference

(GECCO), July 2002.
[4] M. Harman, L. Hu, R. Hierons, A. Baresel, and H. Sthamer.

Improving evolutionary testing by flag removal. In Proceed-

ings of the Genetic and Evolutionary Computation Confer-

ence (GECCO), July 2002.
[5] B. F. Jones, H. Sthamer, and D. E. Eyres. Automatic test data

generation using genetic algorithms. Software Engineering

Journal, 11(5):299–306, Sept. 1996.
[6] X. Liu, H. Liu, B. Wang, P. Chen, and X. Cai. A unified fit-

ness function calculation rule for flag conditions to improve

evolutionary testing. In Proceedings of the 20th IEEE/ACM

International Conference on Automated Software Engineer-

ing (ASE’05). ACM Press, 2005.
[7] P. McMinn and M. Holcombe. Evolutionary testing using

an extended chaining approach. Evolutionary Computation,

14(1):41–64, 2006.
[8] R. P. Pargas, M. J. Harrold, and R. R. Peck. Test-data gener-

ation using genetic algorithms. Journal of Software Testing,

Verification and Reliability, 9(4):263–282, 1999.
[9] P. Tonella. Evolutionary testing of classes. In ISSTA ’04:

Proceedings of the 2004 ACM SIGSOFT international sym-

posium on Software testing and analysis, pages 119–128,

New York, NY, USA, 2004. ACM Press.
[10] S. Wappler and J. Wegener. Evolutionary unit testing of

object-oriented software using a hybrid evolutionary al-

gorithm. In Proceedings of the IEEE World Congress

on Computational Intelligence (WCCI-2006), pages 3193–

3200, Vancouver, Canada, July 2006. IEEE Press.
[11] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test

environment for automatic structural testing. Information

and Software Technology, 43(1):841–854, 2001.

