
 Research and Technology

Wegener, Software Technology, Slide 1

 

Testworkshop TUM, 18. Jan. 2002

Evolutionary Testing
- Overview -
Joachim Wegener

DaimlerChrysler AG, Research and Technology
Joachim.Wegener@DaimlerChrysler.com

Introduction and Motivation

Conclusion, Future Work

Open Problems

Applications of Evolutionary Testing to
- safety testing
- structural testing
- mutation testing
- robustness testing
- temporal behaviour testing

Demo

Evolutionary Testing



 Research and Technology

Wegener, Software Technology, Slide 2

Test Objectives

l exhaustive test usually impossible

Introduction

test data has to be selected according to certain test criteria

Weak Features

Strong Features

Through system execution with selected test data the test aims to
l  detect errors in the system under test and
l  gain confidence in the correct functioning of the test object

l takes into consideration the real environment (e.g. target computer, compiler) and
l tests dynamic system behaviour (e.g. run-time behaviour, memory space requirement)

 most important for test quality, various test methods



 Research and Technology

Wegener, Software Technology, Slide 3

Motivation

• random distribution
• operational profile distribution
• . . .

Test Case Design - State of the Art

Statistical Testing

• statement, branch, condition,
path testing, . . .

• all-defs, all-uses, all-defuse-
chains, . . .

• Classification-Tree Method
• . . .

Functional Testing

Structural Testing

Mutation Testing

• operational profile hard to determine, especially for
new systems

• extensive test evaluation, if no test oracle available

Statistical Testing

• most common test methods date back to the 70ies
todays computing power is not fully deployed
lowest amount possible of test cases
concentration on functional properties, no
specialized support for non-functional properties

• most common test methods not completely
automatable

time-consuming and costly
test quality depends on tester

Functional Testing

Structural Testing

Mutation Testing



 Research and Technology

Wegener, Software Technology, Slide 4

Functional Testing

Mutation Testing

Structural Testing

Statistical Testing

• test objective has to be defined numerically
and is transformed into an optimisation
problem (suitable fitness function)

• test object’s input domain forms search
space, in which input situations fulfilling
test objective are searched for

• uses meta-heuristic search techniques like
evolutionary computation

• fitness assessment for generated test data
based on monitoring results

• iterative procedure, combining good test
data to achieve better test data

Safety Testing

Robustness Testing

Temporal Behaviour Testing

Evolutionary Testing

1

Evolutionary Testing

New approach enabling automatic test case generation
l may be used as an independent test method specialized on testing non-functional

properties,
1

Evolutionary Testing

2

l can also be employed for the automation of existing test methods2



 Research and Technology

Wegener, Software Technology, Slide 5

General Procedure

Evolutionary Testing

Individuals

Test Data

Monitoring

Fitness Values

Test
Execution

Test Results

Termination ?

Evaluation

Selection

Recombination

Mutation

7: 29 39 59 82 90
8: 19 34 23 99 78
...
N’: 23 45 69 70 81

Reinsertion

3: 29 48 23 49 78
4: 89 34 59 39 90
7: 29 39 59 82 90
8: 19 34 23 99 78
...
N: 23 45 69 70 81

Initial Population
(random generation)
1: 19 65 30 99 44
2: 4 13 22 17 56
3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

1: 0.51
2: 0.75
3: 0.20
4: 0.21
...
N: 0.33

7: 29 48 59 49 90
8: 19 34 23 99 78
...
N’: 23 45 69 43 81

3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67



 Research and Technology

Wegener, Software Technology, Slide 6

Application

Evolutionary Testing

Selection

Reinsertion

Recombination

Mutation

Termination ?

Individuals

Test Data

Monitoring

Fitness Values

Test
Execution Evaluation

Essential:
Definition of suitable
fitness function for
test objective
• safety testing
• structural testing
• mutation testing
• robustness testing
• temporal behavior

testing



 Research and Technology

Wegener, Software Technology, Slide 7

Safety Testing

Aim
• for safety critical systems, safety constraints are specified, which under no circumstances

should be violated. If test data results in a violation of safety constraints  error found

Idea
• generate test data in order to violate safety constraints
• fitness function defined as the distance from violating safety condition

Work
• Tracey et al., University of York

Safety condition: speed ≤ 150 mph

if F ≤ 0
     test successful, safety condition violated

Generated test data

kspeed150F +−=

speed
k: smallest step size

Evolutionary Testing - Applications



 Research and Technology

Wegener, Software Technology, Slide 8

Safety Testing

Generated test data

SC: speed ≤ 150 mph

Examples of constructing fitness functions

expression fitness, if exp. fitness, if
false exp. true

 a = b F = abs(a - b) F = 0
 a ≠ b F = k F = 0
 a < b F = (a - b) + k F = 0
 a ≤ b F = (a - b) F = 0
 a > b F = (b - a) + k F = 0
 a ≥ b F = (b - a) F = 0

 a || b F = min(f(a), f(b)) F = 0
 a && b F = f(a) + f(b) F = 0
 k: smallest step size

Examples of constructing fitness functions

expression fitness, if exp. fitness, if
false exp. true

 a = b F = abs(a - b) F = 0
 a ≠ b F = k F = 0
 a < b F = (a - b) + k F = 0
 a ≤ b F = (a - b) F = 0
 a > b F = (b - a) + k F = 0
 a ≥ b F = (b - a) F = 0

 a || b F = min(f(a), f(b)) F = 0
 a && b F = f(a) + f(b) F = 0
 k: smallest step size

Fault-Tree Analysis (Leveson, Harvey)

SC: wheel_speed <
       5160 rpm

SC: Gear < 5 ||
       (motor_speed < 7000 rpm)

F = f(5 - Gear) +
      f(7000 - motor_speed );

F =  5160 - wheel_speed

if F ≤ 0 then /* test successful, SC violated

Evolutionary Testing - Applications



 Research and Technology

Wegener, Software Technology, Slide 9

Structural Testing

Aim
• code coverage is often difficult to achieve, generate a set of test data to cover given

structural test criteria automatically

Ideas
• Coverage oriented approaches:

• test data (individuals) covering many nodes of the control-flow graph receive high
fitness values

• Distance oriented approaches:
• test partitioned into single sub-goals
• separate fitness function for each sub-goal (measures distance from fulfilling branch

predicates in desired way)

Work
• Coverage oriented: Watkins, Roper, Weichselbaum, Pargas et al.
• Distance oriented: Xanthakis et al., Sthamer, Jones et al., Michael et al.,Tracey et al.,

Baresel, Wegener et al.

Evolutionary Testing - Applications



 Research and Technology

Wegener, Software Technology, Slide 10

Coverage Oriented Approaches

Evolutionary Testing - Structural Testing

Individual 1 Individual 2

Number of covered branches

 Individual 1 F = 3

 Individual 2 F = 5

Fitness of individual for statement and branch coverage

➥ based on the number of statements or branches
covered by corresponding test datum (Roper,
Weichselbaum)

➥ based on the number of control-dependence graph
nodes covered by test datum (Pargas et al.)

Fitness of individual for path coverage

➥ 1/overall_execution_frequency_of_path (Watkins)

Results
• promising results, better performance than

random testing



 Research and Technology

Wegener, Software Technology, Slide 11

Distance Oriented Approaches

Target

Level 4

Level 3

Level 2

Level 1

1. Approximation level1. Approximation level

• identify relevant branching statements for target node
on basis of control-flow graph

• relevant branching statements can lead to a miss of the
desired target

• in this sense approximation-level corresponds to
‘distance from target’

➥ Fitness = Approximation_Level + Distance

2. Distance measurement in the branching
statement with undesired branching

2. Distance measurement in the branching
statement with undesired branching

• evaluation of predicate in a branching condition in the
same manner as described for safety testing, e.g.
if A = B           Distance = | A - B |

Evolutionary Testing - Structural Testing



 Research and Technology

Wegener, Software Technology, Slide 12

Evolutionary Testing - Structural Testing

GUI

Test preparation Test execution

Parsing

Instrumentation

Generating
Test Driver

Test Control

Test Server

Test Driver
Instrumented
Test Object

Individuals Fitness Values

Individuals Monitoring Data

Test Data

Test Environment

Visualization of Test ProgressSettings for the Test

Demo



 Research and Technology

Wegener, Software Technology, Slide 13

Results for Structural Testing

Evolutionary Testing - Applications

Results achieved with distance oriented approach
(Wegener, Baresel, Sthamer)

0

200000

400000

600000

800000

1000000

1200000

1400000

N
um

be
r

of
te

st
ca

se
s

ET 16915 42086 23633 35263

RT 199743 215834 470931 1251038

RT / ET 11,8 5,1 19,9 35,5

Triangle_int Triangle_float Complex My_atof

0

20

40

60

80

100

120

A
ch

ie
ve

d
co

ve
ra

g
e

ET coverage 100 100 100 100

RT coverage 90,5 90,5 98,1 66,5

Triangle_int Triangle_float Complex My_atof

0

20

40

60

80

100

120

A
ch

ie
ve

d
co

ve
ra

g
e

ET coverage 100 100 100 100

RT coverage 90,5 90,5 73,2 62,5

Triangle_int Triangle_float Complex My_atof

Equal number of generated test data



 Research and Technology

Wegener, Software Technology, Slide 14

Mutation Testing

Evolutionary Testing - Applications

Aim
• generate test data to detect each of the mutants

Idea
• execute mutated (changed) program parts and try to produce different

output with respect to original program
• fitness function - based on structural testing (distance oriented

approach) - adds elements which guide the search to test data
causing different output behavior

Work
• Tracey et al., University of York
• Bottaci, University of Hull

Results
• 6 to 48 mutants for five different functions (34 to 591 LOC)
• ET killed all mutants, RT killed mutants for three functions only

=



 Research and Technology

Wegener, Software Technology, Slide 15

Robustness Testing 1

Evolutionary Testing

Aim
• Robustness testing of operating system API

Idea
• Assumption: Developers tend to test normal function. Lack of testing for error handling and

exceptions
• Generate test data in order to raise exceptions
• Individual represents sequence of API calls (max. 15) with parameter values
• Fitness function considers return status of API calls (ok, nok, exception) and characteristics

of sequence, e.g. length of sequence

Work
• Boden and Martino, IBM

Results
• within a few days of testing two unknown exceptions were found

Evolutionary Testing - Applications



 Research and Technology

Wegener, Software Technology, Slide 16

Robustness Testing 2

Evolutionary Testing

Aim
• Find interesting fault scenarios for robustness testing of autonomous fault-tolerant vehicle

controller. To which extent does fault activity influence mission performance?

Idea
• Generate fault scenarios simulating sensor faults and actuator faults to test robustness
• Individuals represent starting condition and set of fault triggers
• Find scenarios with minimum number of faults which lead to controller failures
• Find scenarios with maximum number of faults but successful controller operation

Work
• Schultz et al., Navy Center for Applied Research in AI

Results
• various interesting scenarios found which allowed system designers to improve the

controller’s robustness

scoreactivityfault
fitness

*_

1=

�
�

�
�

�

�
�

�
�

�

score =
1 if crash landing

2 if abort

[3,10] if safe landing

Maximization Minimization

Evolutionary Testing - Applications



 Research and Technology

Wegener, Software Technology, Slide 17

Temporal Behaviour Testing

Evolutionary Testing - Applications

Aim
• Temporal behaviour of systems is erroneous when input

situations exist for which the computation violates the
specified timing constraints

Idea
• Find test data with longest and shortest execution times

to check whether they cause temporal error
• Fitness values for individuals based on execution times of

corresponding test data

Work
• Wegener et al., DaimlerChrysler AG
• Tracey et al., University of York
• Puschner et al., TU Vienna
• Related work on testability:

Gross et al., Fraunhofer Gesellschaft

upper

bottom

time limit



 Research and Technology

Wegener, Software Technology, Slide 18

Evolutionary Testing of Temporal Behaviour

Results

- 6 0

- 5 0

- 4 0

- 3 0

- 2 0

- 1 0

0

0

1 0

2 0

3 0

4 0

5 0

6 0

C
G
I

C
G
II

C
G
III

C
G
IV

D
is
kr
ep
an
z

A
irb
ag

I

A
irb
ag

II

M
er
km
al

N
av
ig
at
io
n

M
ot
or
I

M
ot
or
II

M
ot
or
III

M
ot
or
IV

M
ot
or
V

M
ot
or
V
I

M
at
rix

B
ub
bl
es
or
t

variation between ET and RT
results when searching longest
and shortest execution times
for various examples (in %)

•for all test objects (except
Motor VI) ET results are
superior to RT

•for several test objects
variances > 50%

directed search of ET
considerably more powerful
than RT



 Research and Technology

Wegener, Software Technology, Slide 19

ET compared to Functional Testing

Evolutionary Testing of Temporal Behaviour

• variation between ET
and FT results when
searching longest and
shortest execution
times for CG example
on platforms P

• in nearly all cases ET
is superior to FT

• search for longest
execution time more
difficult than for
shortest

• directed search of ET
more powerful than FT -25,00

-20,00

-15,00

-10,00

-5,00

0,00
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19

0,00

10,00

20,00

30,00

40,00

50,00

60,00

FT results undershooting longest ET execution times by (%)

FT results overshooting shortest ET execution times by (%)

P1

P2

P3



 Research and Technology

Wegener, Software Technology, Slide 20

ET compared to Functional and Structural Testing

Results of FST
in each case as
100 %

60
70

80
90

100

110
120

M1 M2 M3 M4 M5 M6

RT FST ET

66
,4

67
,2 69

,6

11
6,

0
10

8,
4

12
0,

8

11
0,

0
10

8,
4

11
2,

0

64
,0

68
,8

54
,0

45
,2

57
,8 59

,6 58
,4

58
,4

54
,0

Comparing the longest execution times from evolutionary testing (ET), functional and structural
testing (FST) as well as random testing (RT) for the engine control tasks (execution times in µs)

Evolutionary Testing of Temporal Behaviour



 Research and Technology

Wegener, Software Technology, Slide 21

Further Applications

Evolutionary Testing - Applications

• Functional Testing
Generating test data for formally specified test cases. Fitness function is similar to
distance measurement for safety and structural testing
Jones et al., Yang

• Assertion Testing
Generating test data to violate assertions in program code (assert()). Fitness function is
distance from violation of the asserted conditions
Tracey et al.



 Research and Technology

Wegener, Software Technology, Slide 22

Configuration of Search

Open Problems

In principle, no search technique available which guarantees optimal solutions independent of
search space structure

• selection of search technique
• configuration of search technique, e.g. evolutionary operators

different test objectives

different test objects

different structures of search space



 Research and Technology

Wegener, Software Technology, Slide 23

Stopping Criteria

Open Problems

• successful test, e.g.
• error found (safety constraints or timing constraints violated, API exception occurred)
• each non-equivalent mutant killed (mutation testing)
• full coverage reached (structural testing)

• difficult to decide when to stop a so far unsuccessful test
• the test object could be correct
• errors have not yet been found but may be detected if

test is continued
• program structures not covered might be infeasible

l Common quantitative termination criteria for evolutionary algorithms
such as

•  number of generations
•  number of target function calls or
•  computation time

are unsatisfactory. They do not take the test progress into account.
0 200 400 600 800 1000

0

1

2

3

4

5

6

7

8
x 10

6 Best objective values



 Research and Technology

Wegener, Software Technology, Slide 24

Conclusion

Conclusion, Future Work

• for most test objectives, test case design is difficult to automate
• for various test objectives common test methods are not suitable

• evolutionary testing is a promising approach when test objectives can be expressed as
optimization problem

• may be used as an independent test method for certain test objectives
• can also be employed for the automation of existing test methods

• successfully employed by various researchers to automate test case design for different
test objectives, e.g. structural testing, safety testing, temporal behaviour testing

• due to high level of automation and good results, evolutionary testing is well placed to
supplement existing test methods, it contributes to higher product quality and promotes
efficient system development

• extensive improvements are possible as a result of further research



 Research and Technology

Wegener, Software Technology, Slide 25

Future Work

Conclusion, Future Work

• seeding of test data into initial population, e.g. for structural testing, and temporal behaviour
testing

• selection of search technique and configuration of evolutionary operators according
to test object metrics

• dynamic configuration of evolutionary operators during test run
with respect to test progress

• test termination using cluster analysis

• develop further application fields, e.g. 
regression testing and back-to-back 
test of control systems, testing 
interactive systems, testing 
object-oriented software



 Research and Technology

Wegener, Software Technology, Slide 26

References

Evolutionary Testing

GECCO 2002 - Search-Based Software Engineering
• http://www.brunel.ac.uk/~csstmmh2/gecco2002

Seminal - Software Engineering using Metaheuristic INnovative ALgorithms
• http://www.discbrunel.org.uk/seminal

Evolutionary Testing:
• University of York (Nigel Tracey, John Clark, ...)

http://www.cs.york.ac.uk/testsig/publications
• Reliable Software Technologies/Cigital (Christoph Michael, Gary McGraw, ...)

http://www.cigital.com/papers
• DaimlerChrysler (Andre Baresel, Hartmut Pohlheim, Harmen Sthamer, Joachim Wegener, ...)

http://www.systematic-testing.com

Introduction to Evolutionary Algorithms by Hartmut Pohlheim
• http://www.geatbx.com/docu/algindex.html


