

ReVVerT 2011

Tracing of Requirements and Test Cases

Dr. Joachim Wegener, Nico Beierle, Peter Kruse, Dr. Robinson-Mallett Berner & Mattner Systemtechnik GmbH joachim.wegener@berner-mattner.com

Agenda

- Introduction
- Demands for Requirements Tracing in Industrial Practice
- Classification-Tree Method (CTM)
- Integration of Requirements Management and CTM
 - Linking Requirements and Test Cases
 - Visualization of Requirement Changes
- · Summary and Future Work

Requirements Tracing in Industrial Practice

Demands result from

- Standards, e.g. ISO 15504 and ISO 26262
 - Verification that each requirement has been implemented (especially for safety requirements)
 - Verification that the system has been tested for each requirement ⇒ Requirements Coverage
- Change Management
- · Variant Management, Configuration Management
- Project Management

Road Vehicles - Functional Safety (ISO 26262)

Subset of typical demands

- To evaluate the completeness of test cases and to demonstrate that there is no unintended functionality, the coverage of requirements at the software unit level shall be determined.
- To evaluate the completeness of tests and to obtain confidence that there is no unintended functionality the coverage of requirements at the software architectural level by test cases shall be determined.
- Each functional and technical safety requirement shall be verified (by test, if applicable) at least once in the complete integration subphase.

Similar requirements in DOD2167A, IEC 61508 etc.

Classification-Tree Method

- All-purpose test method for specification-based test case design
 - Independent of test phase (from unit to system testing)
 - Independent of application domain (technical systems as well as IT systems)
 - Independent of certain test objects
- · Comprehensive and easily understandable test documentation
- · Good abstraction
- Systematic procedure, proven in use
- Clear graphical representation of test complexity and amount
- · Widely used
- Recommended by standards like ISTQB Certified Tester
- Tool support (CTE XL, CTE XL Prof.)

Classification-Tree Method

Additional Aspects

- Vehicle speed of system vehicle
- Relative speed between target vehicle and system vehicle
- · Weather conditions: clear, rain, snowfall
- Daytime: night, morning / evening, noon
- · Lighting: Low sun angle, oncoming vehicles with high beam
- · User action: braking, override, none
- ..

Classification-Tree Method

Weightings for classes

Logical dependency rules *Truck* ⇒ not *high speed*

Table Cot Cot Relations The Cot Stages See The See The Cot See The

Generation rules

- Pairwise (distance, shape)
- Prioritized Pairwise (distance, shape)
- (distance * shape) + color

Test sequences

- Sequence of test steps with timing information
- Function definitions for value changes between test steps

Classification-Tree Editor CTE XL Prof.

- Syntax-oriented, context sensitive graphical editor supporting the classification-tree method
- Hierarchical structuring of large classification trees and large numbers of test cases and test sequences
- · Automatic verification of test cases against dependency rules
- · Automatic test case generation according to generation rules
- · Modeling of test sequences
- Interfaces for DOORS, TESSY, QualityCenter, MESSINA, TPT etc.
- Statistics
- Tag concept for annotation of information

Target Elements for Requirements Tracing

- Elements of the classification tree
 - Classifications
 - Example: the distance must be controlled continuously
 ⇒ distance
 - Classes
 - Example when the distance falls below speed/2,5 meters for more than a second, send warning ⇒ small, large
- Dependency rules
 - Example: the system must be inactive for small speeds below 30 km/h ⇒ speed: <30 ⇒ state: inactive

Target Elements for Requirements Tracing

- · Generation rules
 - Example: all preceding vehicles have to be detected independent of the system vehicle's speed ⇒ speed * vehicle kinds
- · Elements of the combination table
 - Test cases
 - Example speed: high, distance: small, vehicle: truck, color: black, ...)
 - Test sequences
 - · set of test steps
 - Test steps
 - Example: when the speed falls below 30 km/h for more than a second the system has to be deactivated, a corresponding info message has to be displayed ⇒ step1: speed: 50 km/h, step2: speed: <30 km/h)

Integration of DOORS and CTE XL Prof.

- Linking requirements to target elements of the classification tree and combination table
- · Automatic monitoring of requirement changes
- · Highlighting of target elements necessary to review

Summary

- Requirements Tracing demanded in most development standards
 - Vertical tracing
 - Horizontal tracing
- DOORS and CTE XL common tools for requirements management and test case design
- Integration of DOORS and CTE XL Prof. provides a powerful support for horizontal tracing

