
1

On Model-Based Development:

A Pattern for strong Interfaces in SIMULINK
Andreas Rau

Systems Engineer

STZ Softwaretechnik

73730 Esslingen, Germany

andreas.rau@stz-softwaretechnik.de

Abstract— The automotive industry is in the process of

broadly adopting a new model-based approach for embed-

ded systems development. However, the available tools still

have a number of deficiencies, particularly with respect to

the modelling of large and complex systems. This arti-

cle briefly recollects the shortcomings of SIMULINK and

presents a solution in the form of a generic pattern.

Keywords— model-based development, decomposition,

data-abstraction, interfaces, SIMULINK

I. INTRODUCTION

Model-based development of embedded control systems

has been evaluated in the automotive industry for a couple

of years now. This was driven by the hope that the use

of interactive graphical modelling environments with the

capability for simulation and code generation could lead

to a seamless and completely model-based development

process. However, the steps from textual programming to

models that can be simulated and further on to using them

to generate production code not only require new tools but

also changes to the models and the way they are built. In-

terfaces play an important role in this context. This article

will use the SIMULINK tool-family from The MathWorks

as an example to discuss the needs and possiblitities for

implementing interfaces in graphical models.

II. SIMULINK

SIMULINK is part of the MATLAB tool family and

implements a dataflow-oriented, graphical language con-

sisting of diagrams with blocks representing data trans-

formations and connecting lines representing data signals.

The dataflow(=functional) notation lends itself very well

to modelling mathematical equations and SIMULINK of-

fers a powerful library of basic function blocks for this

purpose. With this library, the characteristic differential

equations of feedback control systems can very easily be

modelled. On the other hand, feedforward control sys-

tems or control flow algorithms are somewhat awkward

to model using the dataflow paradigm, even with the re-

cently added control-flow subsystems for if-else, switch-

case and loops. Therefore, the application domain of tools

like SIMULINK is not so much arbitrary systems or algo-

rithms but control systems and filters in general and feed-

back control systems in particular.

As indicated by its name, SIMULINK cannot only be

used to design models, but also to simulate them. Further-

more, its capabilities can be extended by a whole family

of so-called toolboxes. One such toolbox, the Realtime-

Workshop (RTW), provides the capability to generate code

(ANSI-C or Ada) from the simulation model. Another

toolbox, STATEFLOW, allows modelling of control-flow

by means of flow-diagrams and statecharts that can be inte-

grated into SIMULINK. In combination, these tools offer

considerable expressive power and the potential to inno-

vate the way how hybrid control systems are built.

However, the tools still have some shortcomings which

reflect their origin in rapid-prototyping. An overview of

these shortcomings can be found in [Rau00]. One way

to address or work-around these shortcomings are pat-

terns. To this end, this article presents a pattern for mod-

elling strong interfaces in SIMULINK. A set of patterns

for STATEFLOW was presented in [BR01].

III. SIMULINK CAPABILITIES AND LIMITATIONS

As discussed in a previous article by the author,

SIMULINK offers some limited support for functional de-

composition through the concept of subsystems. How-

ever, these subsystems are mostly a graphical convenience

and have no heavyweight semantics attached. Most im-

portantly, the interface of a subsystem merely consists of

a number of signals and is not usually strictly defined in

terms of datastructure or datatype. The possibility to spec-

ify the types of subsystem inputs by assigning a type to

each so-called inport is limited to the built-in types offered

by SIMULINK. No type can be assigned to the so-called

outports of a subsystem to specify its outputs.

Furthermore, there is no concept of data-abstraction

other than vectors (arrays) and no user-defined compound



datatypes. The bus concept of SIMULINK resembles a

structured type, but does not allow an abstract definition

or its reuse in different contexts. The compatibility of

datatypes is decided by layout and not by semantics, i.e.

from SIMULINK’s point of view it would be perfectly

okay to add a four element vector of rpms to a four ele-

ment vector of wheel velocities.

These limitiations make it difficult to define interfaces in

SIMULINK. However, as pointed out in [Rau01a], inter-

faces are important for several reasons, especially for large

systems. An interface describes the inputs and outputs of

a module and is an integral part of its implementation. But

when a subsystem is driven by a bus in SIMULINK, the

structure of this bus cannot be determined by looking in-

side the module, where its elements might be used in many

different places, but outside the module, at the place where

it is built. So the minimum requirement for the pattern that

is presented in the next section was to allow the complete

specification of a subsystem interface as part of this sub-

system. For a strong interface, adherence to this specifica-

tion has to be enforced, so this was an additional require-

ment. Please note, that in absence of dynamic-binding, the

type and structure of data are static properties and can be

checked without a penalty for runtime performance. The

final requirement for the pattern was to facilitate the cre-

ation and enforcing of minimal interfaces. This is neces-

sary because it is very common in SIMULATION models

to pass huge busses between subsystems, with only a frac-

tion of their elements being actually used. This violates the

principle of information-hiding and can lead to all sorts of

problems when the bus structure changes.

IV. A PATTERN FOR SIMULINK INTERFACES

A. A simple example program

The limitations for interface modelling in SIMULINK

can be overcome through a combination of existing ca-

pabilities in a pattern. This pattern is based on an anal-

ogy between textual programming and SIMULINK mod-

els. While such an analogy can provide many valuable

insights, its in-depth discussion is beyond the scope of this

paper. The analogy can be illustrated by a simple example

shown in figure 1 (see next page).

The example shows a generic C-language function

compute velocity with an explicit interface definition

consisting of typed parameters omega, radius and a

typed return value v. It expects its parameters to be in

standard SI-units. When the function is used in main,

the wheel properties first have to be converted to the right

units. Please note, that in the example, the specification

of the units is a comment and the conversion is imple-

mented manually. In an advanced modelling environment

like SIMULINK, this could be supported by a datadic-

tionary for the signal and automatic conversions.

As shown in figure 2 (also next page), the C-compiler

implicitly substitutes variables from the local context for

the formal parameters, calls the function and assigns the

return value to a variable in the calling context.

Please note, that the conversion to the necessary type

is done implicitly by the compiler. For good style, ex-

plicit type-conversions are preferrable and a programming

language should support it by enforcing explicit type-

conversion. This should at least be available as an option.

B. Applying the Pattern

Using the pattern, a function is represented by a sub-

system with a single input and output bus representing the

arguments list and return values, respectively. Following

this notion, the compute velocity function and its invo-

cation are modelled with the following three blocks:

INMAP (left)

prepares the “call” of the module

MODULE (middle)

implements the module itself

OUTMAP (right)

handles the “return” of the results.

Fig. 3

INTERFACE PATTERN, TOP-LEVEL

Figure 3 shows the top-level of the translation of the ex-

ample program into SIMULINK with the pattern. It corre-

sponds to the function main. Please note, how the array of

structs from the example program is modelled as two sepa-

rate vectors, because SIMULINK does not support structs.

C. The INMAP-Block

In the textual example, we saw the assignment of the

actual arguments to the formal function arguments, includ-

ing implicit type conversions. As shown in figure 4, this

is exactly what the INMAP block does. It (a) selects the

arguments from signals or busses in the calling context,



/* compute velocity in m/s from omega in rad/s and radius in m */

double compute_velocity(double omega, double radius) {

double v;

v = omega * radius;

return v;

}

/* compound type for wheel properties */

typedef struct {

single rpm; /* in 1/min */

single radius; /* in cm */

...

} wheel_t;

int main (void) {

wheel_t w[4]; /* wheels from front_left thru rear_right */

single vfl; /* velocity in km/h */

...

vfl = 3.6 * compute_velocity(w[0].rpm * 2 * pi / 60, w[0].radius / 100);

...

}

Fig. 1

EXAMPLE PROGRAM

omega = (double) w[0].rpm * 2*pi / 60; /* evaluate and assign arguments */

radius = (double) w[0].radius / 100; /* to prepare the function-call */

call compute_velocity; /* perform the function-call */

v = result; /* assign return value */

Fig. 2

COMPILER ACTIONS

(b) explicitly performs required datatype conversions, (c)

renames the arguments to match the formal argument

names, (d) builds a new bus to be used as an argument-

list and (e) may be used to perform other kinds of conver-

sions, e.g. unit conversion, to match the definition of the

input interface.

The function of the INMAP is only adaptive. It should

not be used to perform any other kind of calculation. The

INMAP-block collects only the required signals and im-

plements the export of data from the calling context to the

module. By doing so, it minimizes the coupling between

the module and its context. In practice, this is the most

important function of the INMAP-block.

Fig. 4

INSIDE THE INMAP-BLOCK



The conversions can usually be avoided by implement-

ing a signal properly at its source. They are mostly needed

for external signals and to reuse generic modules. Like-

wise, the renaming of arguments when building the bus

for the “argument-list” is actually an option and is mainly

used with modules that are reused in different contexts,

e.g. filters. System-specific modules that are only used

in one place will typically receive their input signals with

their names unchanged.

D. The OUTMAP-Block

The OUTMAP-block is the INMAP-block’s equivalent

for the return-end of the module. As shown in figure 5, it

assigns the return values to signals in the calling context.

Precisely speaking, the purpose of the OUTMAP-block

is to (a) decompose the return bus, (b) select the results

relevant for the calling context, (c) explicitly implement

datatype conversions and (d) assign the results to context

signals, possibly building new busses.

Fig. 5

INSIDE THE OUTMAP-BLOCK

Like the INMAP-block, the OUTMAP block is part of

the module’s context. It implements the import of results

from the module and distributes them in the calling con-

text. By hiding the necessary adaptions, the INMAP-block

and OUTMAP-block support abstraction in the higher-

level diagram. This is equivalent to the hiding of the

MODULE details in the MODULE-block. To show their

purpose on the higher-level diagram, both MAP-blocks

and the MODULE-blocks have descriptive masks.

E. The MODULE-Block

Even though the INMAP-block builds the argument list,

it does not contain the actual definition of the input in-

terface. It must not, because the definition of the input-

interface belongs to the module itself, but the INMAP-

block is part of the context (it will look differently every

time the module is used in another context). Therefore,

the characteristic interface properties of the module are de-

fined inside of it, using the three blocks shown in figure 6:

INPUTS (left)

defines the input-interface of the module

RETMAP (middle)

defines the results of the module

OUTPUTS (right)

defines the output-interface of the module

Fig. 6

INSIDE THE MODULE-BLOCK

All these blocks are masked subsystems constructed

from standard SIMULINK blocks. A complete interface

documentation contains at least the name, datatype and

dimension of all signals and their arrangement. As dis-

cussed in the previous section, the name, datatype and di-

mension of a signal can be specified in an inport1, but it is

not possible to specify the structure of a bus there. How-

ever, unfolding the structure of the arguments-bus inside

the INPUTS-block as shown in figure 7 achieves the same

effect. For a nested bus, this has to be done one level

at a time through a cascade of BusSelectors or else the

structure of the intermediate levels will not be fully cap-

tured. As in most practical cases, the bus in the example

is flat. Other than in the example however, nested busses

with more than 50 signals are not uncommon for inter-

faces of real-world top-level modules. Quite often, these

busses carry a lot of extra signals that violate the principle

of keeping interfaces minimal. This is where the INMAP-

block comes in again.

Eventually, every signal in the bus is connected to a spe-

cial REQUIRE-block. The REQUIRE-block is a simple

masked subsystem that is used to specify the datatype and

dimension of a scalar or vector signal. This is done by

writing the values entered into the mask shown in figure

7 into the inport underneath the mask which will enforce

adherence to this specification.

By completely unfolding the bus structure and fill-

ing in the REQUIRE-blocks, we have created a separate,

full, strongly-typed and explicit specification of the input-

interface. This can be done long before the module is actu-

ally implemented. Before, the input interface of a module

was only implicit and scattered across several ports and

BusSelectors in the actual implementation of the function-

1The name is not enforced



Fig. 7

INSIDE THE INPUTS-BLOCK

ality. Its graphical representation in the pattern is intuitive

and human-readable, but it takes some work to build it.

However, the specification of the interface is not only for

reading, but will also be enforced by the elements used for

building it:

� the BusSelectors will complain if the unfolded bus has

the wrong structure, i.e. if nodes or signals are miss-

ing or have the wrong name.
� the inports underneath the REQUIRE-blocks will

complain if the signals have the wrong datatype or

dimension.

These are both static checks that take place at “compile-

time” of the model and do not harm performance. Note

though, that the BusSelectors will not complain about ex-

tra signals in the bus! It is the job of the INMAP-block to

select only the required signals. The right-hand side of the

INMAP-block must reflect the input-interface.

Fig. 8

INSIDE THE OUTPUTS-BLOCK

The outputs of the module are specified inside the

OUTPUTS-block in the same way as the inputs in the

INPUTS-block (see figure 8). But before that, they

must be collected by the RETMAP-block which is the

OUTMAP’s peer inside the module and implements the

export of results from the module. By doing so, the

RETMAP-block hides internal details (signals) of the

module from its context. Please note the subtle difference

between the RETMAP-block and the OUTPUTS-block:

The RETMAP-block collects the results to be returned

from the module. It corresponds to the return statement

in the C-example. The OUTPUTS-block specifies the ar-

rangement and properties of the results. It corresponds to

the declaration of the return type in the C-example.

Since the RETMAP-block has to build the return bus

the way it is specified, one might consider merging the two

blocks into one. The reason while they are kept separate is,

that like all MAP-blocks the RETMAP-block actually con-

tributes to the functionality of the model, whereas both the

INPUTS- and OUTPUTS-block contain only static speci-

fications and could be stripped out or disabled before code-

generation2.

F. Special blocks

The OUTMAP-block in the example is very simple.

In practice, the OUTMAP-block will sometimes even be

empty. This is possible also for INMAPs and RETMAPs,

but much less frequently. For both cases, there is a special

EMPTYMAP-block (see figure 9). Instead of leaving the

map block out if it is not needed, this block can be used to

distinguish between a purposely empty map and an acci-

dentally forgotten one.

Fig. 9

THE EMPTYMAP-BLOCK

Please note, that renaming in a dataflow-environment

is equivalent to assignment in textual programming. In

MAP-blocks, this usually takes place directly behind a

built-in block, such as a gain or datatype-conversion. Even

2However, they are virtual and will not generate any code anyway.



with an EMPTYMAP-block, we can rename the result bus

as it comes out. When no other built-in block is needed,

we could use a gain(1) to rename signals after a BusSelec-

tor. However, using a specialized block for this purpose is

much more readable. The RENAME-block shown in fig-

ure 10 is such a block. It is yet another masked subsystem

block consisting of an empty subsystem to break the line

on the current level and be able to give the signal a new

name as it comes out. In contrast to the frequently used

gain(1), this will also preserve the bus structure.

Fig. 10

THE RENAME-BLOCK

G. Possible Extensions

The basic pattern presented so far satisfies the minimum

requirements for an interface specification. It could be

extended by a datadictionary to specify additional signal

properties, such as their physical unit, as well as additional

conditions for the inputs and outputs, such as their range

or relation to each other. Doing so would closely resemble

the “design-by-contract” approach described in [Mey92].

The additional conditions could be placed either in the

INPUTS/OUTPUTS-blocks themselves or in two new

parallel PRECONDITIONS/POSTCONDITIONS-blocks

(see figure 11) and could be used for diagnostics during

development or watchdogs during runtime. For the lat-

ter, the PRECONDITIONS/POSTCONDITIONS blocks

would need an outport for the results.

Please note, though, that datatype and size can be en-

forced by a static check while other conditions might re-

quire dynamic checks at runtime and thus require extra

performance. Therefore, it would be desirable to be able

to selectively turn them on and off for diagnostics-on-

demand or to minimize the overhead in the generated code

without having to remove the checks from the model. A

set of custom blocks to implement such optional condition

checks is described in [Rau01b]. When pure SIMULINK

blocks are used to implement the conditions, they must

Fig. 11

THE EXTENSION OF THE PATTERN

be put in an extra subsystem (PRECONDITION-block)

to switch them on and off with SIMULINK’s enable fea-

ture or automatically strip them before production code-

generation.

H. A final example

The interface specifications that are part of the pattern

are also helpful for reuse. The compute velocity func-

tion used in the example could also be a generic function.

Such functions could be placed in libraries and should have

their own masktype to distinguish them from other blocks.

However in addition to the technical specification of the

interface, a semantic documentation (i.e. for signal units)

is still needed. A concept to integrate a datadictionary with

this kind of information is currently being used in several

projects and has been filed for patent ([Rau]). It may be

presented in a future article.

Figures 12 and 13 show a larger example implemented

with the pattern and with plain subsystems. Both models

compute the velocities of the two front wheels of a car and

calculate their average.

As figures 14 and 15 show, only the MAP-blocks have

to be adjusted to reuse the compute velocity function.

The average function only requires name adaption and

thus has a simple INMAP with two RENAME-blocks (fig-

ure 16) and an EMPTYMAP at its output. The function

itself is very simple. Inside of INPUTS and OUTPUTS,

REQUIRE-blocks are used to specify the individual sig-

nals as in the previous example.

The plain version uses less blocks than the pattern, but

lacks abstraction and explicit interface specifications. In

this simple example, the inports could actually be used

for this purpose (the example could even be completely

flattened). However, the typical use of this pattern is for

large subsystems with many signals. They mainly appear

at the upper levels of a model, where testing and the shar-

ing of work usually take place. On lower levels, subsys-



Fig. 12

A LARGER EXAMPLE (CONVENTIONAL SUBSYSTEMS)

Fig. 13

A LARGER EXAMPLE (PROPOSED PATTERN)

Fig. 14

THE ADJUSTED INMAP-BLOCK

tems become smaller and eventually too small to justify

the effort for the pattern. But since they typically only

use a few signals, using individual ports is often sufficient

for describing them. Unfortunately, SIMULINK does not

Fig. 15

THE ADJUSTED OUTMAP-BLOCK

provide different kinds of subsystems to reflect these con-

cepts. Therefore, we use the terms “module” and “cluster”

to refer to subsystems with full interfaces and normal sub-

systems, respectively, and use the term “subsystem” only

to refer to the underlying SIMULINK concept.



Fig. 16

THE INMAP FOR THE AVERAGE FUNCTION

Fig. 17

INSIDE THE AVERAGE FUNCTION

V. CONCLUSION

This paper presented a pattern for explicitly modelling

and enforcing strongly-typed interfaces in SIMULINK,

using only built-in capabilities. By using this pattern, it

is possible to fully specify and enforce strong interfaces

as part of a subsystem and early in the development pro-

cess without disturbing the implementation of the module

or causing runtime penalties.

The different MAP-blocks used for adapting to these

interfaces facilitate information hiding and minimal inter-

faces. Furthermore, they support reuse by providing a sin-

gle place of adaption to different contexts. Together, this

leads to interfaces that are stable, well-documented and ad-

hered to. In addition, the new special blocks introduced

with this pattern provide more detail, clarity and a higher

level of abstraction for SIMULINK models.

However, it takes extra work to follow the pattern. Even

though this effort pays in the long run, eventually the tool

should provide the means to specify signals and interfaces

and check them without having to add extra blocks.

The pattern shown in this paper is currently being suc-

cessfully used in projects in the automotive industry. Still,

it is but one example of the insights to be gained from com-

paring models to textual programs as we advance towards

using them for implementing software. Future research of

this analogy is therefore necessary.

REFERENCES

[BR01] Daniel Buck and Andreas Rau. On Modelling Guidelines:

Flowchart Patterns for STATEFLOW. Gesellschaft für Infor-

matik, FG 2.1.1: Softwaretechnik Trends, 21(2):7–12, Au-

gust 2001. http://pi.informatik.uni-siegen.de/stt.

[Mey92] Bertrand Meyer. Applying “design by contract”. IEEE Com-

puter, 25(10):40–51, 1992.

[Rau] Andreas Rau. Verfahren zur Entwicklung einer technischen

Komponente. Patent Pending, filed 29.06.2001 by Daimler-

Chrysler, German Patent and Trade Mark Office, reference

no. 101 314 438.8-53.

[Rau00] Andreas Rau. Potential and challenges for model-based de-

velopment in the automotive industry. Business Briefing:

Global Automotive Manufacturing and Technology, pages

124–138, September 2000.

[Rau01a] Andreas Rau. Decomposition and interfaces revisited.

Gesellschaft für Informatik, FG 2.1.1: Softwaretechnik

Trends, 21(2):19–23, August 2001. http://pi.informatik.uni-

siegen.de/stt.

[Rau01b] Andreas Rau. Zusicherungen und Laufzeit-Überwachungen

in der modellbasierten Entwicklung (assertions and watch-

dogs in model-based development). In Klaus Panreck and

Frank Dörrscheidt, editors, Simulationstechnik - 15. Sympo-

sium in Paderborn (ASIM2001), 2001.

ABOUT THE AUTHOR

Andreas Rau received his degree in Computer Science from the Fach-

hochschule für Technik (University of Applied Sciences) in Esslin-

gen (Germany) in 1995 and spent 5 years working for the Steinbeis-

Transferzentrum Softwaretechnik in object-oriented software develop-

ment projects at Alcatel SEL and Deutsche Telekom. He is currently

doing research for his Ph.D. in Computer Science with Prof. W. Rosen-

stiel from the University of Tübingen while working with the Con-

trol System Design (CSD) team in advanced development at Daim-

lerChrysler, Sindelfingen (Germany). He is a member of the German

Gesellschaft für Informatik (GI) and the IEEE Computer Society.


