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Abstract

The development of embedded systems is an essential industrial activity. More than 90 % of all
produced electronic components are used in embedded systems. Testing of embedded systems
is considerably more complex than testing of conventional software systems. This is due on the
one hand to the technical features of embedded systems, and on the other hand to the special
requirements made on these kinds of systems: embedded systems usually have to fulfill
functional as well as temporal requirements. Very often embedded systems are safety-relevant.
In addition due to high costs resulting from errors occurring during the operation of embedded
systems, high quality requirements apply.

Dynamic testing is the most important method for testing such quality requirements. However,
test case design is difficult to automate, therefore, most test cases have to be defined manually.
A promising approach to automate test case design is the Evolutionary Test. It can be applied to
testing the temporal behavior of systems, to structural testing as well as to safety testing.

Effectiveness and efficiency of the test process can be clearly improved by Evolutionary Tests.
This has been successfully proved in several case studies. Evolutionary Tests thus contribute to
quality improvement as well as to the reduction of development costs.

0 Introduction

Testing is the most important quality assurance measure for embedded systems. It typically

consumes 50 % of the overall development effort and budget. Systematic test case design is

essential to a good test quality because it defines the type and scope of the test. For most test

objectives, test case design is difficult to automate:

e for functional testing the generation of test cases is usually impossible because no formal
specifications are applied in industrial practice,

e structural testing is also difficult to automate due to the limits of symbolic executions,

e for testing the temporal behavior of systems no specialized methods and tools exist, and also

o for testing safety constraints a generation of test cases is generally impossible.

Therefore, test cases have to be defined manually.

To increase the effectiveness and efficiency of the test and thus reduce the overall development
costs for embedded systems, we require a test that is systematic and extensively automatable.
While functional test case design can be automated to a large extent using new tools such as the
CTE XL [Lehmann and Wegener, 2000], evolutionary testing [Wegener and Grochtmann, 1998] is
a promising approach to entirely automate test case design for the aspects mentioned above.
The Evolutionary Test can be applied to testing the temporal behavior of systems, it can be used
to generate test cases for structural testing, and it enables the automation of safety testing. For
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evolutionary testing the test case design is transformed into an optimization problem that in turn
is solved with meta-heuristic search techniques, such as evolutionary algorithms and simulated
annealing. The input domain of the system under test represents the search space in which test
data fulfilling the test objectives under consideration is searched for. The Evolutionary Test is
applicable in general because it adapts itself to the system under test.

The first chapter introduces the basic principles of the Evolutionary Test. The second chapter
discusses the use of structural tests. The following two chapters illustrate the Evolutionary Test
of the temporal behavior and the test of safety properties. The paper concludes with a summary
of the most important results and an outlook on future work.

1 Evolutionary Testing

Evolutionary testing is characterized by the use of meta-heuristic search methods for test case
generation. To achieve this the considered test aim is transformed into an optimization problem.
The input domain of the test object forms the search space in which one searches for test data
that fulfils the respective test aim. Due to the non-linearity of software (if-statements, loops etc.)
the conversion of test problems to optimization tasks mostly results in complex, discontinuous,
and non-linear search spaces. Neighborhood search methods like hill climbing are not suitable in
such cases. Therefore, meta-heuristic search methods are employed, e.g. evolutionary
algorithms, simulated annealing, or tabu search. In our work, evolutionary algorithms are used to
generate test data because their robustness and suitability for the solution of different test tasks
has already been proven in previous work, e.g. [Jones et al., 1998] and [Wegener et al., 1999].

1.1 A Brief Introduction to Evolutionary Algorithms

Evolutionary algorithms represent a class of adaptive search techniques and procedures based
on the processes of natural genetics and Darwin’s theory of biological evolution. They are
characterized by an iterative procedure and work parallel on a number of potential solutions for a
population of individuals. Permissible solution values for the variables of the optimization
problem are encoded in each individual.

The fundamental concept of evolutionary algorithms is to evolve successive generations of
increasingly better combinations of those parameters that significantly affect the overall
performance of a design. Starting with a selection of good individuals, the evolutionary algorithm
tries to achieve the optimum solution by random exchange of information between increasingly
fit samples (recombination) and introduction of a probability of independent random change
(mutation). The adaptation of the evolutionary algorithm is achieved by selection and reinsertion
procedures based on fitness. Selection procedures control which individuals are selected for
reproduction, depending on the individuals’ fitness values. The reinsertion strategy determines
how many and which individuals are taken from the parent and the offspring population to form
the next generation.

The fitness value is a numerical value that expresses the performance of an individual with regard
to the current optimum, so that different individuals can be compared. The notion of fitness is
fundamental to the application of evolutionary algorithms; the degree of success in using them
may depend critically on the definition of a fitness that changes neither too rapidly nor too slowly
with the design parameters. The fitness function must guarantee that individuals can be
differentiated according to their suitability for solving the optimization problem.

Fig. 1 provides an overview of a typical procedure for evolutionary algorithms. First, a population
of guesses on the solution of a problem is initialized, usually at random. Each individual within
the population is evaluated by calculating its fitness. This will usually result in a spread of
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solutions ranging in fitness from very poor to good. The remainder of the algorithm is iterated
until the optimum is achieved, or another stopping condition is fulfilled. Pairs of individuals are
selected from the population according to the pre-defined selection strategy, and combined in
some way to produce a new guess analogously to biological reproduction.
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Figure 1: Evolutionary Algorithms

Combinations of algorithms are many and varied. Additionally, mutation is applied. The new
individuals are evaluated for their fitness, and survivors into the next generation are chosen from
parents and offspring, often according to fitness. It is important, however, to maintain diversity in
the population to prevent premature convergence to a sub-optimal solution.

1.2 Application to Software Testing

In order to automate software tests with the aid of evolutionary algorithms, the test aim must
itself be transformed into an optimization task. For this, a numeric representation of the test aim
is necessary, from which a suitable fitness function for the evaluation of the generated test data
can be derived. Depending on which test aim is pursued, different fitness functions emerge for
test data evaluation. If an appropriate fitness function can be defined, then the Evolutionary Test
proceeds as follows.

The initial population is usually generated at random. In principle, if test data has been obtained
by a previous systematic test, this could also be used as initial population [Wegener et al., 1996].
The Evolutionary Test could thus benefit from the tester's knowledge of the system under test.
Each individual of the population represents a test datum with which the test object is executed.
For each test datum the execution is monitored and the fitness value is determined for the
corresponding individual. Next, population members are selected with regard to their fitness and
subjected to combination and mutation processes to generate new offspring. It is important to
ensure that the test data generated is in the input domain of the test object. Offspring individuals
are then also evaluated by executing the corresponding test data. Combining offspring and
parent individuals, according to the survival procedures laid down, forms a new population. From
here on, this process repeats itself, starting with selection, until the test objective is fulfilled or
another given stopping condition is reached (compare Fig. 2).
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2 Test Case Generation for Structural Testing

Structural testing is widespread in industrial practice and stipulated in many software-
development standards. Common examples are statement, branch, and condition testing. The
aim of applying evolutionary testing to structural testing is the generation of a quantity of test
data, leading to the highest possible coverage of the selected structural test criterion.

Structural testing methods can be divided into four categories, depending on the control-flow
graph and the required purpose of the test:

e node-oriented methods,

e path-oriented methods,

e node-path-oriented methods, and

e node-node-oriented methods.

Node-oriented methods require the execution of specific nodes in the control-flow graph.
Statement testing and condition testing are the best known methods that fall into this category.
Path-oriented methods require the execution of certain paths in the control-flow graph, e.g. path
testing. Node-path-oriented methods require the achievement of a specific node and from this
node the execution of a specific path through the control-flow graph. The branch test is the
simplest example for node-path-oriented methods. LCSAJ (linear code sequence and jump) also
belongs to the group of node-path-oriented methods. Node-node-oriented methods require the
execution of several nodes of the control-flow graph in a pre-determined sequence without
specifying a concrete path. The data-flow oriented methods all-defs, all-defuse-chains, as well as
all-uses, fit into this category.

In order to apply evolutionary testing to the automation of structural testing, the test is split up
into partial aims. The identification of the partial aims is based on the control-flow graph of the
program under test. Each partial aim represents a program structure that needs to be executed
to achieve full coverage, e.g. a statement, a branch, or a condition with its logical values. For
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each partial aim an individual fitness function is formulated and a separate optimization is
performed to search for a test datum executing the partial aim. The set of test data found for the
partial aims then serves as the test data set for the coverage of the structure test criterion.

2.1 Fitness Functions

The fitness function definitions for the partial aims differ for the four categories of structural
testing methods.

For node-oriented methods, the fitness functions of the partial aims are made up of two
components: the distance and the approximation level. The distance specifies for a branching
node how far away an individual is from executing the branching conditions in the desired
manner (compare [Sthamer, 1996], [Jones et al., 1998], and [Tracey et al., 1998]). For example, if
a branching condition x==y needs to be evaluated as True, then the fitness function may be
defined as |x-y| (provided that the fitness values are minimized during the optimization) or as
hamming distance. The approximation level supplies a figure for an individual that gives the
number of branching nodes lying between the nodes covered by the individual and the target
node ([Wegener et al., 2001], and [Baresel, 2000]). For condition tests the fitness evaluation
needs to be slightly extended. The evaluation of the atomic predicates in the target nodes has to
be included. The evaluation of the atomic predicates takes place in the same way as for the
distance calculations in the branching conditions. For compound predicates the single distances
are added and normalized.

Establishing the fitness function for path-oriented testing methods is much simpler than for
node-oriented methods because the execution of a certain path through the control-flow graph
forms the partial aim for the Evolutionary Test. The program path covered by an individual is
compared with the program path specified as a partial aim. Thereby, the more nodes match, the
higher is the fitness an individual can obtain. The fitness evaluation is supplemented by the
calculation of the distances to the target path in the branching nodes in which the program path
covered by the individual deviates from the target path.

The partial aims for node-path-oriented structural criteria comprise two requirements that need
to be included in the evaluation of the generated individuals. The attainment of a specific node is
required on the one hand, and on the other hand a path that begins with this node has to be
covered. Accordingly, the fitness evaluation of the individuals has to represent both these
components. The fitness function can be based on the fitness functions for node-oriented and
path-oriented methods. Fitness calculations for individuals who do not reach the target node are
carried out in the same manner as for the node-oriented methods. For individuals who reach the
target node the mentioned fitness calculations for path-oriented methods are additionally applied
in order to guide the search into the direction of the desired path.

Fitness calculations for node-node-oriented methods also take place in two stages. After the
execution of the first target node, the second target node has to be covered, without a path
specified through the control-flow graph. The approximation of an individual to the first target
node can be evaluated in the same manner as for node-oriented methods. For all individuals
executing the first target node an approximation to the second node is added. This is also
calculated using the fitness function for node-oriented methods.

A detailed definition of the fitness functions can be found in [Wegener et al., 2001] and [Baresel,
2000].
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2.2 Test Results

The Evolutionary Test has already been applied in various tests of real-world examples for
automatic generation of test data with excellent results. For most test objects a complete
coverage was achieved. Table 1 shows a selection of examined test objects from different
application fields with their characteristics. One branch in the Netflow() function is infeasible.
This leads to the highest possible coverage of 99.3%. For all the functions mentioned
evolutionary testing performed notably better than random testing.

Test object Lines of Number of | Maximum Branch
code branches nesting coverage
level achieved
(%)
Atof() 69 57 8 100
Is_line_covered_by_rectangle() 94 24 2 100
Is_point_located_in_rectangle() |7 5 1 100
Search_field() 600 37 3 100
Netflow() 164 153 5 99,3
Complex_Flow() 46 41 4 100
Classify_Triangle() 38 38 7 100

Table 1: Complexity Measures and Branch Coverage Reached for Different Test Objects

3 Test Case Generation for Temporal Behavior Testing

Most embedded systems are subject to temporal requirements. This is due to reasons of
operational comfort, e.g. short reaction times of the system to user commands, or due to
requirements of technical processes that are controlled by the system. Therefore, embedded
systems have to be thoroughly tested not only with regard to their functional behavior, but also in
order to detect existing deficiencies in temporal behavior.

Existing test methods are unsuitable for the examination of temporal correctness. Even for an
experienced tester it is virtually impossible to find the most important input situations relevant
for a thorough examination of temporal behavior by analyzing and testing complex systems
manually. However, evolutionary testing has already proved to be a promising approach for
testing the temporal behavior of real-time and embedded systems ([Grochtmann and Wegener,
1998], [Mueller and Wegener, 1998], [Puschner and Nossal, 1998], [Wegener and Grochtmann,
1998] and [Gross et al., 2000]). When testing the temporal behavior of systems the objective is
to check whether input situations exist for which the system violates its specified timing
constraints. Usually, a violation occurs because outputs are produced too early or their
computation takes too long. The task of the tester and therefore of the Evolutionary Test is to
find input situations with especially long or short execution times in order to check whether a
temporal error can be produced.

When using evolutionary testing for determining the shortest and longest execution times of test
objects, the execution time is measured for every test datum. The fitness evaluation of the
generated individuals is based on the execution times measured for the corresponding test data.
If one searches for long execution times, individuals with long execution times obtain high fitness
values. Conversely, when searching for short execution times, individuals with short execution
times obtain high fitness values. Individuals with long or short execution times are selected
depending on the objective of the test and combined in order to obtain test data with even longer
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or shorter execution times. The test is terminated if an error in the temporal behavior is detected
or a specified termination criterion has been reached. If a violation of the system’s
predetermined temporal limits has been detected, the test was successful and the system has to
be corrected. Evolutionary testing enables a fully automated search for extreme execution times.
The test especially benefits from the fact that test evaluation concerning temporal behavior is
usually trivial. Contrary to logical behavior, the same timing constraints apply to large numbers of
input situations.

3.1 Test Results

Previous work has shown that evolutionary testing always achieved better results than random
testing (e.g. [Wegener et al., 1997] and [Wegener and Grochtmann, 1998]). The comparison with
static analyses has also confirmed that the extreme execution times determined by the
Evolutionary Test represent realistic estimations of the longest and shortest execution times
[Mueller and Wegener, 1998]. Compared to systematic developer tests, the Evolutionary Test has
also attained convincing results, as the following results illustrate. The results were achieved
during the first application of evolutionary testing for the testing phase of a new engine control
system for six- and eight-cylinder blocks.

The engine control system contains several tasks that have to fulfill timing constraints. Each task
is a test object and has been tested for its worst-case execution time by the developers using
systematic testing. The test cases for testing the temporal behavior, defined by the developers,
are based on the functional specification of the system as well as on the internal structures of
the tasks. For each task the developer tests achieved full branch coverage. Evolutionary testing
was used to verify these results. The tests were performed on the target processor later used in
the vehicles. The execution times have been determined using hardware timers of the target
environment.

The results for six of the tasks (M1 to Mé) are shown in Figure 3. The figure shows the longest
execution times determined by the developers with systematic testing (DT) in comparison to the
results achieved by evolutionary testing (ET).
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Figure 3: Results for the Engine Control System Tasks
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Additionally, the results for random testing are shown (RT). The results of the developer tests are
set to be 100 %. The execution times achieved, measured in us, are shown directly in the bars.
The size of the tasks varied from 39 LOC (lines of code) to 119 LOC, the number of input
parameters from 9 to 32.

Comparison of the results shows that evolutionary testing found the longest execution times for
all the given tasks among these three testing methods. The developer tests never reached the
longest execution time. In three cases the results of the developer tests are even worse than
those of the random test. For the other three tasks the results are better than those of the
random test. The latter only finds the longest execution time for task M6. The longest execution
time found by the random test in task M4 lies more than 35 % below the value determined by the
Evolutionary Test, and 30 % below that of the developer tests.

The excellent performance of the Evolutionary Test in comparison to the developer tests shows
the effectiveness of the Evolutionary Test, also in comparison to function-oriented and structure-
oriented testing methods. The results are especially astonishing, because evolutionary testing
treats the software as black boxes whereas the developers are familiar with function and
structure of their system. An explanation might be the use of system calls of which the effects on
the temporal behavior can only be rated with difficulty by the developers.

4 Test Case Generation for Safety Testing

Embedded systems are often also safety-relevant. Our work on the application of Evolutionary
Tests for testing safety properties of embedded systems is just beginning. It will follow the
example of [Tracey et al., 1998]. Within the context of safety analyses for embedded systems
(e.g. fault-tree analysis, and software-hazard analysis) indispensable safety requirements for the
system components are derived from such system behavior that has to be absolutely avoided. If
a violation of the specified safety requirements is possible the system is not safe. Consequently,
the aim of the test is to find input situations that lead to a violation of the safety requirements. If
such an input situation can be found the system is not safe and has to be corrected.

The fitness evaluation when applying the Evolutionary Test to safety tests is similar to the fitness
evaluation of structural testing. However, the fitness function is not based on the branch
predicates of the program, but on the pre- and post-conditions that have been specified for the
single components (e.g. [Tracey et al., 1998]). For example, if an output signal speed of a
component is not allowed to become negative, the fitness values of the individuals can be set
according to every produced output value for speed. Individuals who generate a small value for
speed obtain a higher fitness value than individuals producing high values for speed. If the
Evolutionary Test is able to find an individual who obtains a negative value for speed, it is proof of
a violation of the safety requirements.

In order to achieve a complete automation of the safety test, we are currently working on an
integration of the Evolutionary Test with Time Partition Testing [Lehmann, 2000] for the system
and integration test of embedded systems. Another aspect of our work is the integration with the
test environment MTest [Conrad et al., 1999] for the unit test of the software modules of control
systems.

5 Summary and Future Work

The thorough test of embedded systems includes a number of demanding testing tasks. These
are difficult to master on the basis of conventional function-oriented and structure-oriented
testing methods. Moreover, automation is also problematic. This includes the generation of test
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cases for the coverage of different structural testing criteria, the test of temporal behavior, and
the test of the compliance with the specified safety requirements for a safety-relevant system.

The Evolutionary Test is a promising approach to entirely automate complex testing tasks. It
enables the complete automation of test case design for structural testing, the testing of
temporal behavior with regard to its exceeding or falling below the specified timing constraints,
and the testing of safety properties. Evolutionary testing has already produced very good results
in all these three areas of application. Due to the complete automation of the Evolutionary Test
the system can be tested with a large number of different input situation, both for testing the
temporal behavior and for safety tests. In most cases, more than several thousand test data sets
are generated and executed within only a few minutes. If no violations of the specified
constraints can be found the confidence in the correct functioning of the system will be
increased to a large extent. The prerequisites for the application of Evolutionary Tests are
extremely few. Only an interface specification of the system under test is needed to guarantee
the generation of valid input values. For structural testing the source code of the test object is
also required.

The application of the Evolutionary Test has been successfully proved in several case studies.
First industrial applications within the field of engine electronics yielded very good results.
Effectiveness and efficiency of the test process can be clearly improved by Evolutionary Tests.
Evolutionary Tests thus contribute to quality improvement and to the reduction of development
costs. The application scope of Evolutionary Tests goes further than the work described within
this paper. Additional application fields are, for instance, functional [Jones et al., 1995] and
robustness tests [Schultz et al., 1993].

Current work on evolutionary structural tests concentrates on the assessment of the testability
of programs on the basis of statically determinable software metrics. By using appropriate
information it is possible to select the best suitable evolutionary algorithms for the test, and also
to start program transformations that improve the testability.

In future, it is also intended to examine more closely the combination of evolutionary testing with
static analyses for testing the temporal behavior. By combining both approaches, the area in
which one finds the extreme execution time of the system can be closely defined, e.g. static
analyses give an upper estimate for the maximum execution time and testing gives a lower
estimate for the maximum execution time. This means, developers of real-time systems would
gain an efficient tool to rate exactly the minimum and maximum execution times for their
systems.

In addition we are looking at investigating the application of evolutionary structural tests for
testing the temporal behavior of systems. The idea is to pre-determine program paths as test aim
for the evolutionary structural test which have been identified as worst-case execution time
paths by means of static analyses (e.g. [Mueller, 1997], [Puschner and Vrchoticky, 1997]). If a
test datum can be found that executes the path we can be sure that this is the longest execution
time possible to obtain. Due to pessimistic assumptions in static analyses the path will usually
not be executable. However, the pre-definition of these paths can lead to a very interesting
concentration on paths with long execution times.
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