
1

Integrated Test Management within the Tool Environment TESSY

Roman Pitschinetz, Matthias Grochtmann and Joachim Wegener

Daimler-Benz AG, Research and Technology, Alt-Moabit 96 a
D-10559 Berlin, Germany

Abstract: A software testing tool is most effective, when it works within an organizational
context. Computer-aided test activities framed into a testing life cycle management reduce
time, effort and cost. The test system TESSY provides support for both automation of dy-
namic unit testing and appropriate management of the whole testing life cycle. Practical
trials of the test system started in 1994. First promising results indicate that the test effi-
ciency can be enhanced significantly by using TESSY. Future work will focus on exten-
sions of TESSY with respect to integration testing and automatic generation of test cases
and test data.

Keywords: Dynamic tests, Automatic testing, Software Tools, Computer-aided Testing,
Management.

1. INTRODUCTION

The management of software tests includes several basic
issues (Royer, 1993): knowledge of major testing meth-
ods to control quality, test planning, efficient test case
design, test automation, and monitoring of the test prog-
ress. Dynamic testing is of major practical importance
for the quality assurance of software systems. Typically,
it consumes 30 % - 50 % of the overall software develop-
ment effort and budget (see e.g. Marks, 1992). Investiga-
tions of various software development projects in sev-
eral divisions of the Daimler-Benz Group showed that
the costs for software testing mostly arose for unit test-
ing, integration testing, and system testing. On average,
34 % of the total testing expenses is spent on unit testing,
28 % on integration testing and approximately 27 % on
system testing. The remaining 11 % is spent on specific
tests like the examination of software-hardware inter-
faces.

Furthermore, the investigations also revealed significant
time-consuming activities in managing the software test
process. Using individual software testing tools inter-

mediate manual work still remains to be done, including
organizing test objects, preparing tests, and inquiring the
status of test activities and test work products. These test
work products, such as test cases, test data, expected re-
sults and actual values, grow very fast and, therefore,
have to be managed appropriately. Moreover, test rigs,
environments for regression testing and batch processes
are to be configured. Fully integrated software testing
tools manage the software test process and reduce the
time spent on tedious and error-prone manual work.

Hence, it is very important to provide an overall support
for the whole testing life cycle. Significant savings can
be achieved, and the product quality can be improved by
tools automating both the test activities involved in soft-
ware testing and the management of the software testing
process.

This paper describes the managing of software testing
processes by means of the computer-aided testing tool
TESSY. The following chapter contains a description of
the central test activities required for a thorough test.
Chapter 3 gives a short overview of the architecture and



2

functionality of TESSY. Afterwards, the management of
software test processes is described as it is provided by
TESSY. First results from practical trials are reported in
chapter 5. After some concluding remarks the paper
closes with a short outlook on future work.

2. TEST ACTIVITIES

A systematic test comprises the following main techni-
cal activities: test case determination, test data selection,
expected results prediction, test case execution, moni-
toring, and test evaluation. This structure facilitates a
systematic procedure and the definition of intermittent
results. Figure 1 shows these test activities and the rela-
tionship between them.

Program

Test Case
Determination

Test Data
Selection

Expected Results
Prediction

Test Case
Execution Monitoring

Test
Evaluation

Figure 1: Test activities

Functional
Specification

In the course of test case determination, the test cases,
with which the test object should be tested, are defined.
A test case defines a certain input situation to be tested.
It comprises a set of input data from the test object’s in-
put domain. Each element of the set should, for example,
lead to the execution of the same program functionality,
the same program branch or the same program state, de-
pending on the test criteria applied. The test case deter-
mination is the most important activity for a thorough
test, since it determines the kind and scope of the ex-
amination and thus the quality of the test. A test case ab-
stracts from a concrete test datum and defines it, only in
so far as it is required for the intended test. During test
data selection the tester has to choose a concrete element
from each test case with which the test should be
executed.

Determining the anticipated results and program behav-
ior for every selected test datum constitutes expected re-
sults prediction. If it is not possible to specify unequivo-
cal output values or the expected behavior, acceptance
criteria or other reference data have to be used for the
predicition of expected results.

Subsequently, test case execution is performed. The test
object is run with the selected test data. The output val-
ues and the program behavior are thus determined.

The behavior of the test object can be observed and re-
corded during test case execution by means of monitor-
ing. A common method is to instrument the program
code according to a white-box test criterion. For that pur-
pose, the source code is extended by inserting statements
at control-flow or data-flow-relevant points of the pro-
gram, which count the number of executions of the cor-
responding program parts. Another kind of monitoring
is performed by several capture-and-replay tools. They
record the outputs produced by the test object on the
screen and save them for regression testing.

In the course of test evaluation, actual and expected val-
ues as well as actual and expected program behavior are
compared, and thus the test results are produced. Finally,
the test is evaluated by comparing the test results
achieved with the test objectives aspired to.

Due to the lack of software testing tools offering an over-
all and efficient support for all test activities, Daimler-
Benz Research in Berlin developed the test system
TESSY which provides general support for all test acti-
vities and aims at a considerable increase in unit testing
efficiency for programs written in C. TESSY is designed
to reduce the costs for software testing and to improve
the reliability of systematic and thoroughly tested soft-
ware products.

3. TEST SYSTEM TESSY

The test system TESSY was developed on VAXstations
with the operating system VMS for unit testing of ANSI-
C and VAX-C programs. Other C-compilers, especially
for host-target cross-compiling, were added correspond-
ing to the needs of TESSY users. TESSY is now avail-
able on SUN/Solaris, HP-UNIX, Open VMS and NT/
Windows systems.

The most important strength of TESSY is that it provides
support for the whole testing life cycle, offering a homo-
geneous, object-based, and context-sensitive graphical
user interface which guides the tester through all test
phases (Wegener et al. 1994). Accordingly, the use of
TESSY is simple and comfortable. As a result, the test
system can be applied by testers without detailed knowl-
edge of the C programming language. This promotes the



3

Program
Test
Docu-
menta-
tion

TESSY-
DB

Test Data
Selection

Test
Exection

Im
po

rt
In

te
rf

ac
e

Ex
po

rt
In

te
rf

ac
e

Testing Life Cycle Management

Objects,
Libraries

Figure 2: Architecture of TESSY

Test
Evalua-
tion

Specifica-
tion

W

Test Case De-
termination

Monitoring

Expected Re-
sults Predic-
tion

distinction between software development and quality
assurance as it is demanded in various standards. The
user interface is based on OSF’s Motif toolkit.

Figure 2 shows the architecture of TESSY with the main
test activities in the center of the figure framed by the
testing life cycle management and the accompanying
import and export interfaces. Each test activity is sup-
ported by a window-based subtool exchanging data
through the common database.

TESSY facilitates a combination of black-box and
white-box tests according to the effective test strategy
defined by (Grimm, 1989). The emphasis is laid on
black-box testing since only test cases derived from the
functional specification allow to examine appropriately,
whether or not all specified requirements have been im-
plemented into the test object. Test cases are determined
using the classification-tree editor CTE, a graphical edi-
tor for the descriptive and systematic design of black-
box test cases following the classification-tree method
(Grochtmann et al. 1995). For the interactive input of
test data and expected results, a browser tool navigates
the tester through the test object’s interface. Test case
execution and test evaluation are totally automated.
During the execution of black-box test cases the branch
coverage is measured to estimate the test quality and its
comprehensiveness. TESSY provides control panels
with various options to control basic activities, such as
test driver generation, coverage analysis and test rig con-
figuration, and to specify the scope of the test documen-
tation to be generated automatically. An additional
white-box test is to be conducted, if the degree of branch
coverage achieved is not sufficient to reach the test ob-
jectives. The test has to be improved subsequently by
additional test cases derived from the program structure.

The testing life cycle management contains various
tasks for managing the software test. They will be ex-
plained in the following sections.

4. MANAGING THE SOFTWARE TEST

An effective test requires support for both the automa-
tion of test activities and the management of the entire
test process. As mentioned above, TESSY contains tools
for each test activity. Furthermore, it provides powerful
support for managing the software test, including test or-
ganization, test preparation, monitoring the status of test
activities and test cases as well as recording the con-
sumption of time for distinct activities. Moreover, test
rigs, environments for regression testing and batch pro-
cesses are configured automatically.

4.1. Test Organization

A testing tool is most effective when it works within an
organizational context. Therefore, TESSY provides an
appropriate test organization, which controls tool-in-
vocation sequences and policies following the effective
test strategy.

The technical framework of TESSY’s test organization
includes the import/export interface and the test data-
base. Imports required for the test, e.g. the functional
specification, program sources, object files, libraries
and other information produced during the software de-
velopment process, are managed. The database provides
an export interface to easily transfer data to other tools
such as project management tools or desktop publishing
systems.

Furthermore, technical requisites for test case execution
as, there is the implementation of stubs and test drivers,
are organized. Another task is the configuration of
make-files which generate test rigs by compiling and
linking the test driver, the test object, stubs, object files
and libraries. Host-target configurations are also pro-
duced automatically, and the remote process remains un-
der control of the test organization.

Figure 3 shows the start-up window. The left side com-
prises components of test organisation to manage test
projects, the right side is used to start the several test ac-
tivities.

4.2. Test Preparation

In preparation of the test, the user has to supply some in-
formation for each module using the environment editor
or the import interface. The essential data are the pro-
gram sources for the logical module, the compiler to be
used as well as compiler and linker options. In case all
information is complete, TESSY investigates the whole



4

Figure 3: TESSY start-up window to manage test projects and test activities.

export interface of the module automatically by analyz-
ing all program sources stated. The export interface con-
sists of all exported C-functions and their interfaces, in-
cluding global variables, parameters, function return
codes and the corresponding data types. The export
functions ascertained represent the actual test objects.

Before the tester is able to start with the central test acti-
vities for each function, he has to complete the interface
description of the export functions by entering certain
characteristics of each interface component for which an
automatic identification was impossible. He must spec-
ify the passing direction, that means he has to determine
whether a component is only an input, an output, or input
and output of the respective test object. Value parame-
ters are always of the kind IN, the function return code
is always of the kind OUT. Global variables and dynamic
values, like pointers, can be of the kind IN, INOUT, or
OUT. The completion of the interface description is car-
ried out using TESSY’s interface editor, a browser tool
shown in Figure 4. The browser acts as a powerful navi-
gation tool with support for collapse/expand and also
partial views of the interface. It is possible to browse
through complex structures down to the level of basic C

data types. Figure 4 illustrates this for various parame-
ters of different data types of a sample function.

Figure 4: Editor for interface description



5

4.3. Test Measurements

To be able to control software testing, measurements are
essential, especially for process maturity improvement
(Humphrey, 1990). The impacts of maturity improve-
ment aim at enlarged monitoring and tracking of the test-
ing process, at better estimation of the software test de-
velopment scheduling and at enhanced product quality.
An appropriate mean for monitoring and tracking the
software process is the status of test activities, test work
products and test objectives. Based on time measure-
ment, detailed efforts expended by each activity can be
recorded as well as time required for project milestone.
Thereby, productivity can be calculated. TESSY pro-
vides support for all these activities.

During the entire testing life cycle, TESSY exactly
knows the status for each test object - whether or not the
interface description is complete, test cases are defined,
test data are selected, expected results are predicted, test
cases are executed or test results are available. Test ob-
jectives, such as project specific failure rates or code
coverage metrics, are determined and assessed automat-
ically. The project manager offers the opportunity to
monitor all test objects and modules of the project actu-
ally to be worked on.

Tessy-timer conducts time-measurement for each central
test activity (Figure 5). It supports both automatic time-
stamps and manual time measurement. In the first case,
Tessy-timer records the time spent on each test activity
automatically as long as the pertaining tools are used. In
the second case, the user triggers the timer using buttons
of Tessy-timer for time-outs or for recording manual ef-
forts. Furthermore, buttons can be added optionally if re-
quired.

The status of test objects and the counting times of
associated activities are stored in the test system data-
base. Based on the collected data detailed test manage-
ment status tables can be generated, also including sta-
tistics. Measured time consumed by test activities is
opposed to metrics of test work products, like the com-
plexity of the test object’s interface, lines of code, source
statements, source branches, test cases, test data, ex-
pected results, imported functions, test results and er-
rors. An examination of (Davey et al., 1995) showes that
the best basis for an estimation of the expected testing ef-
fort is simply the number of source code statements.

However, it has to be taken into account that measuring
of human productivity has an important psychological
impact. Our experience shows that engineers do not
mind quality criteria targets and the collection of data to
achieve their goals as long as they participate in setting
these goals and agree with them. Furthermore, the mere

Figure 5: Tessy-timer

05:30 h

act of measuring human process changes them and thus
enhances the product quality.

4.4. Batch Process

The use of batch processes enables large quantities of
tests to be run in parallel and unattended, for example
overnight or at weekends. Re-running all previous tests
in one step can be performed at each time required by
quality assurance or customer. A status protocol informs
about successful and erroneous test runs. Furthermore,
test documentation is generated for the whole project so
that both quality assurance and customer can always in-
spect the current test version.

4.5. Regression Testing

In practice, tests are run an average of eight times - if
done manually (Graham et al., 1995). Through the ex-
tensive management assistance provided by TESSY,
comprising an integrated database for all test-relevant
data, regression testing can be totally automated in most
cases. After the tester has edited the required data for the
first test execution, the data are available for further tests
at any time. Normally, the test run simply has to be re-
peated with the new test object.



6

5. PRACTICAL EXPERIENCE AND RESULTING
EXPANSIONS

In 1994, practical trials of the entire test system started
in larger projects of Daimler-Benz divisions. All ap-
plications were completed successfully. The test effi-
ciency could be improved significantly. Savings of up to
70 % of the efforts normally required were estimated by
the TESSY users due to the fact that TESSY totally auto-
mates several time-consuming activities. Nevertheless,
some useful enlargements were proposed and TESSY
was expanded to offer new functionality for batch pro-
cessing and host-target testing. For example, several
common target compilers are now supported. Further-
more, new import/export interfaces were added to sup-
ply TESSY with environment information available
from other software development phases as well as with
external test data and external reference data for test
evaluation. This is very useful for large data, like audio
and video data, available from the environment. More-
over, two additional interactive tools are currently under
development to complement the support for regression
testing. They can be applied to reuse test information
like test cases, test data, and expected values in cases
where the test object interface was changed or the classi-
fication-tree was enlarged by supplementary classifica-
tions and classes. It is also possible to use these tools to
recycle existing test information for the examination of
other test objects.

6. CONCLUSION AND FUTURE WORK

The test system TESSY provides powerful editors for

test case determination, test data selection, and expected
results prediction, as well as interactive tools for manag-
ing the software test. They are specialized on the respec-
tive activities and conducive to a systematic test. The
classification-tree editor CTE is of special importance,
because it supports a thorough and well-structured test
case determination corresponding to the classification-
tree method. Test case execution, monitoring, test evalu-
ation, and test documentation are executed automati-
cally by TESSY (Table 1).

First applications in practice were successful and gave
several indications of improvements to further integrate
TESSY with other development tools like debuggers and
performance measurement tools. Additionally, it is pos-
sible to use Tessy-timer to measure the cost of using other
tools and thus to measure the entire cost of the quality as-
surance activities.

In the future, expansions of TESSY are planned to en-
able fully-automated unit testing. Owing to the strengths
and growing relevance of formal methods in software
engineering the use of formal specification techniques is
planned. This will enable computer-aided generation of
classification trees and test cases as well as automatic
generation of test data from formal test case specifica-
tions. Test evaluation will be supported by executable
specifications.

Other fields of future work will be the further support for
integration and system testing as well as a test system
version for Ada programs.

Test Activities Supported by TESSY
Managing
Life Cycle

Test Case
Determination

Test Data
Selection

Expected Re-
sults Prediction

Test Case
Execution Monitoring Test

Evaluation
Test

Documentation

V 1.0

V 2.0
(planned)

Table 1: Degree of automation provided by TESSY

tool supported (interactive) totally automated

planned



7

REFERENCES

Davey, S., D. Huxford, J. Liddiard, M. Powley and A.
Smith (1993). Metrics Collection in Code and Unit
Test as Part of Continuous Quality Improvement.
Proceedings of EuroSTAR’94 - 2nd European In-
ternational Conference on Software Testing, Analy-
sis, and Review, London, UK, pp. 48/1 - 48/27.

Graham, D.R., P. Herzlich and C. Morelli (1995). Cast
Report - Computer-Aided Software Testing. Cam-
bridge Market Intelligence Limited, London House,
Parkgate Road, London, UK.

Grimm, K. (1989). An Effective Strategy and Automa-
tion Concepts for Testing of Safety-Related Software.
In R. Genser et al. (Ed.): Safety of Computer Systems
1989 (SAFECOMP ’89), Proceedings of the IFAC/
IFIP Workshop, Vienna, Austria, Pergamon Press,
UK, pp. 71 - 79.

Grochtmann, M., J. Wegener and K. Grimm (1995). Test
Case Design Using Classification Trees and the
Classification-Tree Editor CTE. Proceedings of 8th
International Software Quality Week, San Francisco,
California, USA, pp. 4-A-4/1-11.

Humphrey, W. S. (1990). Managing the Software Pro-
cess. Addison-Wesley Publishing Company, Inc.,
New York.

Marks, D. M. (1992). Testing Very Big Systems.
McGraw-Hill, Inc., New York.

Royer, C. R. (1993). Software Testing Management. PTR
Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Wegener, J. and R. Pitschinetz (1995). Tessy -- An Over-
all Unit Testing Tool. Proceedings of 8th Interna-
tional Software Quality Week, San Francisco,
California, USA, pp. 3-A-3/1-14.


