MIC 2005

Search-based Testing

Dr. Joachim Wegener

DaimlerChrysler AG, Research and Technology, Berlin Software Analysis and Testing Prof. Mark Harman

King's College, London Department of Computer Science

Outline

- Motivation
- Introduction to Search-based Testing
- Representation
- Fitness Functions
- Landscapes
- Managing Complexity
- Challenges and Conclusion

Industrial Viewpoint

DAIMLERCHRYSLER King's College

Academic Viewpoint

Testing is Everywhere

System execution with selected test data aiming at

- detecting errors in the system under test and
- Set gaining confidence in the correct functioning of the system under test

Quality criteria (ISO 9126)

Characteristics to be addressed by Testing

Testing is Important and Expensive

Testing is the most important analytical quality assurance method

- takes into consideration the real application environment (e.g. target
- computer, compiler)
- tests dynamic system behavior (e.g. run-time behavior, memory space requirements)
- testing carries a considerable cost-factor within system development
 - exhaustive test is usually impossible
 - test data have to be selected according to certain test criteria (test methods)
 - usually performed manually

Testing is Important and Expensive

Testing is the most important analytical quality assurance method

- takes into consideration the real application environment (e.g. target
- computer, compiler)
- tests dynamic system behavior (e.g. runtime behavior, memory space requirements)
- testing carries a considerable cost-factor within system development
 - exhaustive test is usually impossible
 - test data have to be selected according to certain test criteria (test methods)
 - usually performed manually

Introduction to Search-Based Testing

- Human (manual) search for faults
 - Expensive
 - Error prone
- We aim to fully automate the search
 - to improve test quality and
 - to increase test efficiency
 - Representation of input
 - Easy and obvious
 - Fitness function
 - Capture the aspect we are trying to test

- input parameters of system under test form the variables to be generated by EC
- individuals could be used 1:1 as input parameters

- Often complex transformations of individuals are necessary to gain test data, e.g. if
 - Internal states got involved
 - Curve traces have to be generated

- Often complex transformations of individuals are necessary to gain test data, e.g. if
 - Internal states got involved
 - Curve traces have to be generated
 - Length of input signal

- Often complex transformations of individuals are necessary to gain test data, e.g. if No. 1: ESP
 - Internal states got involved
 - Curve traces have to be generated

- Often complex transformations of individuals are necessary to gain test data, e.g. if
 - Internal states got involved
 - Curve traces have to be generated
 - Length of input signal
 - Number of signal sections
 - Length of signal sections

- Often complex transformations of individuals are necessary to gain test data, e.g. if
 - Internal states got involved
 - Curve traces have to be generated
 - Length of input signal
 - Number of signal sections
 - Length of signal sections
 - Amplitude of signal sections Input signal

- Often complex transformations of individuals are necessary to gain test data, e.g. if
 - Internal states got involved
 - Curve traces have to be generated
 - Length of input signal
 - Number of signal sections
 - Length of signal sections
 - Amplitude of signal sections Input signal
 - Function type for signal section

- Often complex transformations of individuals are necessary to gain test data, e.g. if
 - Internal states got involved
 - Curve traces have to be generated
 - Length of input signal
 - Number of signal sections
 - Length of signal sections
 - Amplitude of signal sections
 - Function type for signal section

Overall process

- The search aims to find a single test datum
- The process is repeated to find a set of test data
- A single search may find others as a side product

Real-Time Testing

Most embedded systems have to fulfil timing constraints (technical processes to be controlled, operational comfort)

DAIMLERCHRYSLER King's College

Autonomous Parking System

Steps:

- Measuring the size of the parking space using environmental sensors and parking space model
- Signaling sufficient sized parking spaces to the driver
- If parking is committed by the driver:
 - Determine the position of the car with respect to the parking space
 - Plan the trajectory path for the parking maneuver
- Drive the car into the parking space autonomously

Autonomous Parking System

 Generation of parking scenarios by evolutionary algorithms varying

Autonomous Parking System

 Selection of smallest distance between car and collision area as fitness value (negative values also allowed)

Autonomous Parking System

Generation 20 / Individual 06

Generation 20 / Individual 05

Fitness Functions

- Fitness functions are required for each kind of testing
 - Temporal
 Search for extreme execution times
 - Functional Search for logical error
 - Search for constraint violation
 - Structural path

Safety

Search for data which exercises desired

Variety of Landscapes

- There are many test scenarios
- There are many systems under test
- Each has its own landscape
- The features of the landscapes contain all the features that make the application of metaheuristics interesting

DAIMLERCHRYSLER King's College

Parking System Testing

Relatively nice landscapes

DAIMLERCHRYSLER King's College

Temporal Testing

Relatively nasty landscapes

Landscapes

- A large variety of landscapes have been encountered
- The type of landscape cannot be known a priori
- Features which have been observed include
 - Multi-dimensionality
 - Plateaux
 - Discontinuities
 - Definition gaps
 - Multi-modality
 - Noise

Managing Complexity Advanced Search Techniques

- EA instead of GA
- multi-population model
- different search strategies (mutation, recombination)
- combination by migration
- more ressources for successful strategies

Managing Complexity Search Space Size Reduction

- The input to the program is our individual in a population
- However, the entire input may not affect the test goal
- There may be some input elements which cannot affect the test goal
- Static analysis can be used to find some of these redundant inputs
- This reduces the size of the search space

Managing Complexity Search Space Transformation

- Some program features make search hard
- In the search community we would transform the landscape by transforming the fitness function
- Since our fitness function is applied to programs, we can transform the program in order to transform the fitness function
- One example is a flag which is either true or false. This creates a spike for structural testing
- The effect of the flag removal transformation on the landscape looks like this:

DAIMLERCHRYSLER King's College

DAIMLERCHRYSLER King's College

DC Evolutionary Testing Environment

Challenges

- Landscape transformation and simplification
- Integration of evolutionary testing and other analysis techniques (dynamic and static analyses)
- (Automatic) selection and configuration of search technique
- Testing complex systems with internal states and continuous behaviour
- Avoid the generation of invalid test data (generate new individual and replace, map to valid test datum, execute as robustness test)
- Definition of suitable stopping criteria for the test (convergence of population)
- Determining the quality of the generated tests (coverage)
- Gaining knowledge about the system under test from the large set of executed test data, observed landscapes, and search behaviour
- Determining the quality of the system under test

Conclusions

- Testing is very important to software quality assurance
- Without automation it is very expensive
- Testing provides a rich field of applications for Metaheuristics
- Many interesting and challenging issues arise
 - representation and transformation of individuals into test scenarios
 - fitness function definitions
 - every kind of landscape

Conclusions

- Testing is very important to software quality assurance
- Without automation it is very expensive
- Testing provides a rich field of applications for Metaheuristics
- Many interesting and challenging issues arise
 - representation and transformation of individuals into test scenarios
 - fitness function definitions
 - every kind of landscape

COR Special Issue on SBSE

- Search Based Testing is an example of Search Based Software Engineering
- There will be a COR focussed issue on Search Based Software Engineering
- Guest Editors: Walter Gutjahr and Mark Harman
- Deadline: 30th September
- We may extend this by one or two weeks if sufficient requests
- SBSE session next in room 32
- SBSE session after lunch (also room 32)