
Research and Technology

Wegener, Software Technology, Slide 1

IEEE Seminal Workshop, 14 May 2001, Toronto

Overview of Evolutionary Testing
Joachim Wegener

DaimlerChrysler AG, Research and Technology
Joachim.Wegener@DaimlerChrysler.com

Introduction and Motivation

Conclusion, Future Work

Open Problems

Evolutionary Testing and its Applications
- safety testing
- structural testing
- mutation testing
- robustness testing
- testing of temporal behaviour

Dynamic Testing - Test Methods

Research and Technology

Wegener, Software Technology, Slide 2

Software Development Requirements

Introduction and Motivation

 Increasing amount of software
in products in almost all areas

 Software as differentiating
factor for competitive
advantage

 Increasing
complexity of
systems

 Increasing significance
of software in safety
relevant areas

 High requirements for software
based systems through norms,
standards and legal regulations

High costs and greater  High costs and greater
time commitment for
system development
and maintenance

 High consequential
costs due to faults

 Cost-effective
development and
time-to-market
crucial for
competitiveness

Research and Technology

Wegener, Software Technology, Slide 3

Testing in Practice

Introduction and Motivation

System and
acceptance
testing

Other development activities

Module and
integration
testing

50

30

20

Test automation

Test methods

• Testing is the most important analytical quality assurance method
• Testing carries a considerable cost-factor within system development

• Testing is not performed systematically

• low error detection rate

• high costs

• Testing is too resource intensive

Average distribution of software development costs for embedded systems

Research and Technology

Wegener, Software Technology, Slide 4

Test Objectives

 an exhaustive test is usually impossible

Dynamic Testing

Test data has to be selected according to certain test criteria

Weak Features

Strong Features

Through system execution with selected test data the test aims to
 detect errors in the system under test and
 gain confidence in the correct functioning of the test object

 takes into consideration the real environment (e.g. target computer, compiler) and
 tests dynamic system behaviour (e.g. run-time behaviour, memory space requirement)

Research and Technology

Wegener, Software Technology, Slide 5

Dynamic Testing

Functional Testing

Mutation Testing

Test Methods

Structural Testing

Statistical Testing

Evolutionary Testing

Research and Technology

Wegener, Software Technology, Slide 6

Dynamic Testing

Mutation Testing

Test Methods

Structural Testing

Statistical Testing

Evolutionary Testing

Equivalence Partitioning

Boundary Value Analysis

Functional Testing

Category-Partition Method

Classification-Tree Method

• test case design performed on basis of
specification

• most important test approach

• widely used

• test size difficult to quantify (coverage of
requirements, function points, ...)

• difficult to automate (only on basis of
formal specification techniques)

Research and Technology

Wegener, Software Technology, Slide 7

Dynamic Testing

Functional Testing

Mutation Testing

Test Methods

Structural Testing

Statistical Testing

Evolutionary Testing

Research and Technology

Wegener, Software Technology, Slide 8

Dynamic Testing

Mutation Testing

Test Methods

Statistical Testing

Evolutionary Testing

Functional Testing

Control-Flow Oriented Methods

Data-Flow Oriented Methods

• test case design is performed on the
basis of the program structure

• common test approach (included in
many standards)

• not possible to check whether all
requirements have been implemented

• difficult to automate (limits of symbolic
execution)

• often full coverage is not achievable

Structural Testing

• Statement Testing
• Branch Testing
• Condition Testing
• Path Testing
• . . .

• All-Defs
• All-Uses
• All-DefUse-Chains
• . . .

Research and Technology

Wegener, Software Technology, Slide 9

Dynamic Testing

Functional Testing

Mutation Testing

Test Methods

Structural Testing

Statistical Testing

Evolutionary Testing

Research and Technology

Wegener, Software Technology, Slide 10

Dynamic Testing

Mutation Testing

Test Methods

Structural Testing

Evolutionary Testing

Functional Testing

According to operational profile

Random Testing

• test data generation in accordance with
pre-determined probability distribution

• statistically assured statement of reliability

• extensively capable of automation

• used in telecommunications industry

• operational profile hard to determine,
especially for new systems

• specific test-relevant value combinations
produced only with little probability

• extensive test evaluation, if no test oracle
available

Statistical Testing

Research and Technology

Wegener, Software Technology, Slide 11

Dynamic Testing

Functional Testing

Mutation Testing

Test Methods

Structural Testing

Statistical Testing

Evolutionary Testing

Research and Technology

Wegener, Software Technology, Slide 12

Dynamic Testing

Functional Testing

Mutation Testing

Test Methods

Structural Testing

Statistical Testing

Evolutionary Testing

• test cases built in order to kill mutants
(slightly changed versions) of the original
program

• research oriented, limited usage in
industrial practice

• provides no guidance on how to define
the test cases, difficult to automate

Research and Technology

Wegener, Software Technology, Slide 13

Dynamic Testing

Functional Testing

Mutation Testing

Test Methods

Structural Testing

Statistical Testing

Evolutionary Testing

Research and Technology

Wegener, Software Technology, Slide 14

Evolutionary Testing

Functional Testing

Mutation Testing

Test Methods

Structural Testing

Statistical Testing

• test data generation uses metaheuristic
search techniques like evolutionary
computation

• test objective has to be defined numerically
and transformed into an optimisation
problem (suitable fitness function)

• fitness values are based on the monitoring
results for test data

• test object’s input domain forms search
space

• test object’s input parameters represent the
decision variables for the search

Selection

Reinsertion

Recombination

Mutation

Initial
Population

Individuals

Test Data

Monitoring
Fitness
Values

Test
Execution

Test Results

Termination ?

Evaluation

Safety Testing

Robustness Testing

Temporal Behavior Testing

Evolutionary Testing

1

2

Research and Technology

Wegener, Software Technology, Slide 15

Evolutionary Testing

Selection

Reinsertion

Recombination

Mutation

Test Results

Termination ?

General Procedure Initial Population
(random generation)
1: 19 65 30 99 44
2: 4 13 22 17 56
3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67Individuals

Test Data

Monitoring

Fitness Values

Test
Execution Evaluation

Research and Technology

Wegener, Software Technology, Slide 16

General Procedure

Evolutionary Testing

Selection

Reinsertion

Recombination

Mutation

Test Results

Termination ?

Individuals

Test Data

Monitoring

Fitness Values

Test
Execution Evaluation

1: 0.51
2: 0.75
3: 0.20
4: 0.21
...
N: 0.33

Initial Population
(random generation)
1: 19 65 30 99 44
2: 4 13 22 17 56
3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

Research and Technology

Wegener, Software Technology, Slide 17

General Procedure

Evolutionary Testing

Reinsertion

Recombination

Mutation
Individuals

Test Data

Monitoring

Fitness Values

Test
Execution

Test Results

Termination ?

Evaluation 1: 0.51
2: 0.75
3: 0.20
4: 0.21
...
N: 0.33

Selection

3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

Initial Population
(random generation)
1: 19 65 30 99 44
2: 4 13 22 17 56
3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

Research and Technology

Wegener, Software Technology, Slide 18

General Procedure

Evolutionary Testing

Reinsertion

Mutation
Individuals

Test Data

Monitoring

Fitness Values

Test
Execution

Test Results

Termination ?

Evaluation

Selection

3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

1: 0.51
2: 0.75
3: 0.20
4: 0.21
...
N: 0.33Recombination

7: 29 48 59 49 90
8: 19 34 23 99 78
...

N’: 23 45 69 43 81

3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

Initial Population
(random generation)
1: 19 65 30 99 44
2: 4 13 22 17 56
3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

Research and Technology

Wegener, Software Technology, Slide 19

General Procedure

Evolutionary Testing

Reinsertion

Individuals

Test Data

Monitoring

Fitness Values

Test
Execution

Test Results

Termination ?

Evaluation

Selection

Recombination

7: 29 48 59 49 90
8: 19 34 23 99 78
...

N’: 23 45 69 43 81

3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

Mutation

7: 29 39 59 82 90
8: 19 34 23 99 78
...

N’: 23 45 69 70 81

Initial Population
(random generation)
1: 19 65 30 99 44
2: 4 13 22 17 56
3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

1: 0.51
2: 0.75
3: 0.20
4: 0.21
...
N: 0.33

Research and Technology

Wegener, Software Technology, Slide 20

General Procedure

Evolutionary Testing

Individuals

Test Data

Monitoring

Fitness Values

Test
Execution

Test Results

Termination ?

Evaluation

Selection

Recombination

Mutation

7: 29 39 59 82 90
8: 19 34 23 99 78
...

N’: 23 45 69 70 81

Reinsertion

3: 29 48 23 49 78
4: 89 34 59 39 90
7: 29 39 59 82 90
8: 19 34 23 99 78
...
N: 23 45 69 70 81

Initial Population
(random generation)
1: 19 65 30 99 44
2: 4 13 22 17 56
3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

1: 0.51
2: 0.75
3: 0.20
4: 0.21
...
N: 0.33

7: 29 48 59 49 90
8: 19 34 23 99 78
...

N’: 23 45 69 43 81

3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

Research and Technology

Wegener, Software Technology, Slide 21

Application

Evolutionary Testing

Selection

Reinsertion

Recombination

Mutation

Termination ?

Individuals

Test Data

Monitoring

Fitness Values

Test
Execution Evaluation

Essential: Definition of suitable fitness
function representing test objective

Research and Technology

Wegener, Software Technology, Slide 22

Safety Testing

Aim
• For safety critical systems, safety constraints are specified, which under no circumstances

should be violated. If test data results in a violation of safety constraints  error

Idea
• Generate test data in order to violate safety constraints
• Fitness function defined as the distance from violating safety condition

Work
• Tracey et al., University of York

Safety condition: speed  150 mph

if F = 0
test successful, safety condition violated

Generated test data

kspeedF 150

spee
d k: smallest step size

Evolutionary Testing - Applications

Research and Technology

Wegener, Software Technology, Slide 23

Safety Testing

Generated test data

SC: speed  150 mph

Examples of constructing fitness functions

expression fitness, if exp. fitness, if
false exp. true

a = b F = abs(a - b) F = 0
a  b F = k F = 0
a < b F = (a - b) + k F = 0
a  b F = (a - b) F = 0
a > b F = (b - a) + k F = 0
a  b F = (b - a) F = 0

a || b F = min(f(a), f(b)) F = 0
a && b F = f(a) + f(b) F = 0
k: smallest step size

Fault-Tree Analysis (Leveson, Harvey)

SC: wheel_speed <
5160 rpm

SC: Gear < 5 ||
(motor_speed < 7000 rpm)

F = f(5 - Gear) +
f(7000 - motor_speed);

F = 5160 - wheel_speed

if F = 0 then /* test successful, SC violated

Evolutionary Testing - Applications

Research and Technology

Wegener, Software Technology, Slide 24

Structural Testing

Aim
• Generate test data to cover structural test criteria automatically
• Since code coverage is often difficult and too expensive, it’s often neglected. Appropriate

tools do not exist
• Automation promises to reduce testing effort (time and expenses) during the determination

of relevant test data

Idea
• Coverage oriented approach:

• Test data (individuals) that cover many nodes of code receive high fitness values
• Distance oriented approach:

• Test partitioned into single sub-goals
• Separate fitness function for each sub-goal measures distance from fulfilling branch

predicates in desired way

Work
• Coverage oriented: Watkins, Roper, Weichselbaum, Pargas et al.
• Distance oriented: Xanthakis et al., Sthamer, Jones et al., Michael et al.,Tracey et al.,

Baresel, Wegener et al.

Evolutionary Testing - Applications

Research and Technology

Wegener, Software Technology, Slide 25

Coverage Oriented Approaches

Evolutionary Testing - Applications

Individual 1 Individual 2

Number of covered branches

Individual 1 F = 3

Individual 2 F = 5

Fitness of individual for statement and branch coverage

 based on the number of statements or branches
covered by corresponding test datum (Roper,
Weichselbaum)

 based on the number of control-dependence graph
nodes covered by test datum (Pargas et al.)

Fitness of individual for path coverage

 1/overall_execution_frequency_of_path (Watkins)

Results
• promising results, better performance than

random testing

Research and Technology

Wegener, Software Technology, Slide 26

Evolutionary Testing - Applications

0

20000

40000

60000

80000

100000

120000

140000
N

u
m

b
er

 o
f

te
st

 c
as

es

ET 2900 9500 14500 13200

RT 4000 15900 125900 110000

RT / ET 1,379310345 1,673684211 8,682758621 8,333333333

Bisect_state Fourballs_state Tritype_state Tritype_branch

Results achieved with coverage oriented approach (reported by Pargas)

ET and RT achieve full coverage for all test objects

Results of Structural Testing

Research and Technology

Wegener, Software Technology, Slide 27

Distance Oriented Approaches

Target

Level 4

Level 3

Level 2

Level 1

1. Approximation level

• Identify relevant branching statements for target node
on basis of control-flow graph

• Relevant branching statements can lead to a miss of the
desired target

• In this sense approximation-level corresponds to
‘distance from target’

 Fitness = Approximation_Level + Distance

2. Distance measurement in the branching
statement with undesired branching

• Evaluation of predicate in a branching condition in the
same manner as described for safety testing, e.g.
if A = B Distance = | A - B |

Evolutionary Testing - Applications

Research and Technology

Wegener, Software Technology, Slide 28

Results of Structural Testing

Evolutionary Testing - Applications

0

20

40

60

80

100

120

A
ch

ie
ve

d
 c

o
ve

ra
g

e

ET coverage 100 100 100 100

RT coverage 90,5 90,5 98,1 46,6

Triangle_int Triangle_float Complex My_atof

0

200000

400000

600000

800000

1000000

1200000

1400000

N
u

m
b

er
 o

f
te

st
 c

as
es

ET 16915 42086 23633 35263

RT 199743 215834 470931 1251038

RT / ET 11,80863139 5,128403745 19,92683959 35,47735587

Triangle_int Triangle_float Complex My_atof

Results achieved with distance oriented approach (Wegener, Baresel, Sthamer)

• ET requires less test cases compared to RT (by a factor of between 5 to 35)

• ET achieves full branch coverage for all test objects, RT achieves between 46% and
98% on average

Research and Technology

Wegener, Software Technology, Slide 29

Mutation Testing

Evolutionary Testing - Applications

Aim
• Generate test data to detect each of the mutants

Idea
• Execute mutated (changed) program parts and try to produce different

output with respect to original program
• Fitness function - based on structural testing (distance oriented

approach) - adds elements which guide the search to test data
causing different output behavior

Work
• Tracey et al., University of York
• Bottaci, University of Hull

Results
• 6 to 48 mutants for five different functions (34 to 591 LOC)
• ET killed all mutants, RT killed all mutants for three functions only

=

Research and Technology

Wegener, Software Technology, Slide 30

Robustness Testing 1

Evolutionary Testing

Aim
• Robustness testing of operating system API

Idea
• Assumption: Developers tend to test normal function. Lack of testing for error handling and

exceptions
• Generate test data in order to raise exceptions
• Individual represents sequence of API calls (max. 15) with parameter values
• Fitness function considers return status of API calls (ok, nok, exception) and characteristics of

sequence, e.g. length of sequence

Work
• Boden and Martino, IBM

Results
• within a few days of testing two unknown exceptions were found

Evolutionary Testing - Applications

Research and Technology

Wegener, Software Technology, Slide 31

Robustness Testing 2

Evolutionary Testing

Aim
• Find interesting fault scenarios for robustness testing of autonomous fault-tolerant vehicle

controller. To which extent does fault activity influence mission performance?

Idea
• Generate fault scenarios simulating sensor faults and actuator faults to test robustness
• Individuals represent starting condition and set of fault triggers
• Find scenarios with minimum number of faults which lead to controller failures
• Find scenarios with maximum number of faults but successful controller operation

Work
• Schultz et al., Navy Center for Applied Research in AI

Results
• various interesting scenarios found which allowed system designers to improve the

controller’s robustness

scoreactivityfault
fitness

*_

1


















score =
1 if crash landing

2 if abort

[3,10] if safe landing

Maximization Minimization

Evolutionary Testing - Applications

Research and Technology

Wegener, Software Technology, Slide 32

Testing Real-Time Constraints

Evolutionary Testing - Applications

Aim
• Temporal behaviour of real-time systems is erroneous when

input situations exist for which the computation violates the
specified timing constraints

Idea
• Find test data with longest and shortest execution times

to check whether they cause temporal error
• Fitness values for individuals based on execution times of

corresponding test data

Work
• Wegener et al., DaimlerChrysler AG
• Tracey et al., University of York
• Puschner et al., TU Vienna
• Related work on testability:

Gross et al., Fraunhofer Gesellschaft

upper

bottom

time limit

Research and Technology

Wegener, Software Technology, Slide 33

Evolutionary Testing - Applications

Results

- 6 0

- 5 0

- 4 0

- 3 0

- 2 0

- 1 0

0

0

1 0

2 0

3 0

4 0

5 0

6 0

C
G

I

C
G

II

C
G

III

C
G

IV

D
is

kr
e

pa
n

z

A
ir

ba
g

I

A
irb

a
g

II

M
er

km
al

N
av

ig
at

io
n

M
o

to
r

I

M
ot

or
II

M
ot

or
III

M
ot

o
r

IV

M
ot

or
V

M
ot

o
r

V
I

M
at

ri
x

B
u

bb
le

so
rt

variation between ET and RT
results when searching longest
and shortest execution times
for various examples (in %)

•for all test objects (except
Motor VI) ET results are
superior to RT

•for several test objects
variances > 50%

directed search of ET
considerably more powerful
than RT

Research and Technology

Wegener, Software Technology, Slide 34

Comparison of test runs for evolutionary testing and random testing when searching the
longest execution time for railroad electronics example

Detailed Analysis of Selected Results

Generation

E
xe

cu
ti

on
 T

im
e

(i
n

 c
yc

le
s)

Evolutionary Test

Random Test

Execution Time (cycles)

F
re

q
u

en
cy

Execution Time (cycles)

F
re

q
ue

nc
y

Evolutionary Testing - Applications

Research and Technology

Wegener, Software Technology, Slide 35

Computer Graphics Example: Results Platform 1

The shortest and longest execution times (in processor cycles) found by evolutionary
testing (ET), functional testing by students and random testing (RT)

400 450 500 550 600 650 700 1600 1700 1800 1900 2000 2100 2200

Student 1

Student 9
Student 8

Student 6
Student 5
Student 4

Student 2

Student 19
Student 18

Student 3

Student 17
Student 16
Student 15

Student 7

Student 14
Student 13
Student 12
Student 11
Student 10

RT
 4

66

ET
 4

52

ET
 2

17
6RT

 2
15

0

Evolutionary Testing - Applications

Research and Technology

Wegener, Software Technology, Slide 36

Computer Graphics Example: Results Platform 2

340 360 380 400 420 440 460 1450 1500 1550 1600 1650 1700 1750 1800 1850

Student 1

Student 9
Student 8

Student 6
Student 5
Student 4

Student 2

Student 19
Student 18

Student 3

Student 17
Student 16
Student 15

Student 7

Student 14
Student 13
Student 12
Student 11
Student 10

E
T

 1
83

9,
 R

T
 1

83
9

E
T

 3
55

R
T

 3
59

The shortest and longest execution times (in processor cycles) found by evolutionary
testing (ET), functional testing by students and random testing (RT)

Evolutionary Testing - Applications

Research and Technology

Wegener, Software Technology, Slide 37

Computer Graphics Example: Results Platform 3

100 120 140 160 180 200 420 440 460 480

Student 1

Student 9
Student 8

Student 6
Student 5
Student 4

Student 2

Student 19
Student 18

Student 3

Student 17
Student 16
Student 15

Student 7

Student 14
Student 13
Student 12
Student 11
Student 10

E
T

 4
84

R
T

 4
72

E
T

 1
23

, R
T

 1
23

The shortest and longest execution times (in processor cycles) found by evolutionary
testing (ET), functional testing by students and random testing (RT)

Evolutionary Testing - Applications

Research and Technology

Wegener, Software Technology, Slide 38

Results Engine Control

Results of FST
in each case as
100 %

60

70

80

90

100

110

120

M1 M2 M3 M4 M5 M6

RT FST ET

66
,4

67
,2 69

,6

11
6,

0
10

8,
4

12
0,

8

11
0,

0

10
8,

4

11
2,

0

64
,0

68
,8

54
,0

45
,2

57
,8 59

,6 58
,4

58
,4

54
,0

Comparing the longest execution times from evolutionary testing (ET), functional and structural
testing (FST) as well as random testing (RT) for the engine control tasks (execution times in s)

Evolutionary Testing vs. Functional and Structural Testing

Research and Technology

Wegener, Software Technology, Slide 39

Further Applications

Evolutionary Testing - Applications

• Functional Testing
Generating test data for formally specified test cases. Fitness function is similar to distance
measurement for safety and structural testing
Jones et al., Yang

• Assertion Testing
Generating test data to violate assertions in program code (assert()). Fitness function is
distance from violation of the asserted conditions
Tracey et al.

Research and Technology

Wegener, Software Technology, Slide 40

Configuration of Search

Open Problems

In principle, no search technique available which guarantees optimal solutions independent of
search space structure

• selection of search technique
• configuration of search technique, e.g. evolutionary operators

different test objectives

different test objects

different structures of search space

Research and Technology

Wegener, Software Technology, Slide 41

Stopping Criteria

Open Problems

• successful test
• error found (safety constraints or timing constraints violated, API exception occurred)
• each non-equivalent mutant killed (mutation testing)
• full coverage reached (structural testing)

• difficult to decide when to stop a so far unsuccessful test
• the test object could be correct
• errors have not yet been found but may be detected if

test is continued
• program structures not covered might be infeasible

 Common quantitative termination criteria for evolutionary algorithms
such as

• number of generations
• number of target function calls or
• computation time

are unsatisfactory. They do not take the test progress into account

Research and Technology

Wegener, Software Technology, Slide 42

Reliability of Results

Problem Areas

What is the probability that

 a module is safe if no violation of safety properties have been found during

evolutionary testing?

 no essentially longer or shorter execution times exist than those found through

evolutionary testing?

 statements, branches, or paths not executed during evolutionary testing are

infeasible?

 each mutant not killed by evolutionary testing is equivalent to the original

program?

Reproducibility

Different test runs produce different results (test data sets)

Research and Technology

Wegener, Software Technology, Slide 43

Testability of Systems

Problem Areas

Logical dependencies between test objects‘ input parameters complicate test data

generation

if a > 0  b < x1

if a < 0  b > x2

if a = 0  b = x1

System states lead to noisy fitness function (different fitness values for the same test datum)

How to deal with individuals not representing a valid test datum?

 Generate new individual and replace

 Map to valid test datum

 Execute as robustness test, ensure high fitness value (no selection)

Research and Technology

Wegener, Software Technology, Slide 44

Boolean Variables

Problem Areas - Structural Testing

 No difference in objective values => no guidance for the evolutionary search

Narrowing the Search Space by Nested Conditions

 Objective values based only on executed program parts = > Undesirable convergence of

population leads to reduction of search space (reason: short circuit execution)

if (b == True) {
...

Results in plateaus for measuring whether or not the
conditions are met. No information to direct the
search to another plateau

if (A == 0 && B == 0 && C == 0) {
...

if (A == 0) {
if (B == 0) {

if (C == 0) {
...

if (strcmp(a, b)) {
...

Research and Technology

Wegener, Software Technology, Slide 45

Different Ways to Target Node

Problem Areas - Structural Testing

 How should different paths to target node be handled? Should a certain path be

prioritized or should all possible paths be considered equal?

Prioritization might result in selection of a path difficult to execute

If all paths are dealt with equally the recombination of good individuals might result in

worse individials

Target
Node

Individual BIndividual A Individuals A and B are close to target node

What kind of individual results from the recombination of the two?

Which distance should be considered for the evaluation of
individual B?

Research and Technology

Wegener, Software Technology, Slide 46

Loops

Problem Areas - Structural Testing

 What kind of objective function is needed for poorly structured loops with several exits?

The more iterations executed the better
the objective value should be

Individual B

Target
Node

Individual A

Func loop() {
for (i=0, i < 20, i++) {

if (a[i] > b[i]) return;
}
/* target_node */

}
Func loop() {

i=0;
while (True) {

if (i == 20)
break;

if (a[i] > b[i]) return;
i++;

}
/* target_node */

}

???

Research and Technology

Wegener, Software Technology, Slide 47

Conclusion

Conclusion, Future Work

 Evolutionary Testing is a new method for the automation of test case design

 Based upon transformation of test aim into an optimization problem, subsequently solved

with the assistance of metaheuristic search methods

 Employed by various researchers to solve different test objectives. Consistently excellent

results were attained

 May be utilised as an independent test method for certain test objectives

 Can also be employed for the automation of other test methods

 Due to high level of automation and good results, Evolutionary Testing is well placed to

supplement existing test methods. It contributes to better product quality and promotes

efficient development

 However, more research remains to be done to answer outstanding questions

Research and Technology

Wegener, Software Technology, Slide 48

Future Work

Conclusion, Future Work

• seeding of test data into initial population, e.g. for structural testing, and temporal behaviour
testing

• selection of search technique and configuration of evolutionary operators according
to test object metrics

• dynamic configuration of evolutionary operators during test run
with respect to test progress

• test termination using cluster analysis

• develop further application fields e.g.
regression testing and back-to-back
test of control systems, testing
interactive systems, testing
object-oriented software

Research and Technology

Wegener, Software Technology, Slide 49

References

Evolutionary Testing

Seminal - Software Engineering using Metaheuristic INnovative ALgorithms
• http://www.discbrunel.org.uk/seminal

Evolutionary Testing:
• University of York (Nigel Tracey, John Clark, ...)

http://www.cs.york.ac.uk/testsig/publications
• Reliable Software Technologies/Cigital (Christoph Michael, Gary McGraw, ...)

http://www.cigital.com/papers
• DaimlerChrysler (Harmen Sthamer, Andre Baresel, Joachim Wegener, ...)

http://www.systematic-testing.com

Introduction to Evolutionary Algorithms by Hartmut Pohlheim
http://www.geatbx.com/docu/algindex.html

Research and Technology

Wegener, Software Technology, Slide 50

References: Structural Testing

Evolutionary Testing

Xanthakis, S., Ellis, C., Skourlas, C., LeGall, A. und Katsikas, S.: Application of Genetic
Algorithms to Software Testing. Proceedings of the 5th International Conference on
Software Engineering, Toulouse, France (1992).

Watkins, A.: A Tool for the Automatic Generation of Test Data Using Genetic Algorithms.
Proceedings of the Software Quality Conference ’95, Dundee, Great Britain, pp. 300-309
(1995).

Sthamer, H.-H.: The Automatic Generation of Software Test Data Using Genetic Algorithms.
PhD Thesis, University of Glamorgan, Pontypridd, Wales, Great Britain (1996).

Jones, B., Sthamer, H. and Eyres, D.: Automatic Structural Testing Using Genetic Algorithms.
Software Engineering Journal, vol. 11, no. 5, pp. 299–306 (1996).

Jones, B., Eyres, D., and Sthamer, H.: A Strategy for using Genetic Algorithms to Automate
Branch and Fault-based Testing. Computer Journal, vol. 41, no. 2, pp. 98–107 (1998).

Tracey, N., Clark, J., Mander, K. and McDermid, J.: An Automated Framework for Structural
Test-Data Generation. Proceedings of the 13th IEEE Conference on Automated Software
Engineering, Hawaii, USA (1998).

Research and Technology

Wegener, Software Technology, Slide 51

References: Structural Testing

Evolutionary Testing

Tracey, N., Clark, J. and Mander, K.: The Way Forward for Unifying Dynamic Test Case
Generation: The Optimisation-Based Approach. Proceedings of the IFIP International
Workshop on Dependable Computing and Its Applications, Johannesbourg, South Africa,
pp. 169-180 (1998).

Weichselbaum, R.: Genetic Algorithms – Perfectly Suited for Software Test Automation.
Proceedings of the 2nd Software Quality Week Europe, Brussels, Belgium (1998).

Weichselbaum, R.: Software Test Automation by means of Genetic Algorithms. Proceedings of
the 6th International Conference on Software Testing, Analysis and Review, Munich,
Germany (1998).

Pargas, R., Harrold, M., and Peck, R.: Test data generation using genetic algorithms. Software
Testing, Verification & Reliability, vol. 9, no. 4, pp. 263-282 (1999).

McGraw, G., Michael, C., and Schatz, M.: Generating Software Test Data by Evolution.
Technical Report RSTR-018-97-01. Reliable Software Technologies Corporation (1997).

Michael, C., McGraw, G., Schatz, M., and Walton, C.: Genetic Algorithms for Dynamic Test
Data Generation. Technical Report RSTR-003-97-11. Reliable Software Technologies
Corporation (1997).

Research and Technology

Wegener, Software Technology, Slide 52

References: Testing Temporal Behaviour

Evolutionary Testing

Wegener, J.; Grimm, K.; Grochtmann, M.; Sthamer, H. and Jones, B.: Systematic Testing of
Real-Time Systems. Proceedings of the 4th European Conference on Software Testing,
Analysis & Review, Amsterdam, Netherlands (1996).

Wegener, J.; Sthamer, H.; Jones, B. and Eyres, D.: Testing Real-time Systems using Genetic
Algorithms. Software Quality Journal, vol. 6, no. 2, Chapman Hall, pp. 127-135 (1997).

Mueller, F. and Wegener, J.: A Comparison of Static Analysis and Evolutionary Testing for the
Verification of Timing Constraints. Proceedings of the 4th IEEE Real-Time Technology and
Applications Symposium, Denver, USA (1998).

O’Sullivan, M.; Vössner, S. and Wegener, J.: Testing Temporal Correctness of Real-Time
Systems - a New Approach using Genetic Algorithms and Cluster Analysis. Proceedings of
the 6th European Conference on Software Testing, Analysis & Review, Munich, Germany
(1998).

Puschner, P. und Nossal, R.: Testing the Results of Static Worst-Case Execution-Time Analysis.
Proceedings of the 19th IEEE Real-Time Systems Symposium, Madrid, Spain, pp. 134–143
(1998).

Research and Technology

Wegener, Software Technology, Slide 53

References: Testing Temporal Behaviour

Evolutionary Testing

Tracey, N.; Clark, J.; McDermid, J. and Mander, K.: A Search Based Automated Test-Data
Generation Framework for High-Integrity Systems. Journal of Software Practice and
Experience, January 2000.

Wegener, J. and Grochtmann, M.: Verifying Timing Constraints of Real-Time Systems by means
of Evolutionary Testing. Real-Time Systems, vol. 15, no. 3, Kluwer Academic Publishers, pp.
275-298 (1998).

Wegener, J.; Pohlheim, H. and Sthamer, H.: Testing the Temporal Behaviour of Real-Time Tasks
using Extended Evolutionary Algorithms. Proceedings of the 7th European Conference on
Software Testing, Analysis and Review, Barcelona, Spain (1999).

Gross, H.-G.; Jones, B. and Eyres, D.: Structural performance measure of evolutionary testing
applied to worst-case timing of real-time systems. IEE Proceedings Software, Vol. 147, No.
2, pp. 25–30 (2000).

Research and Technology

Wegener, Software Technology, Slide 54

References: Functional Testing

Evolutionary Testing

Jones, B.; Sthamer, H.; Yang, X. and Eyres, D.: The Automatic Generation of Software Test Data
Sets using Adaptive Search Techniques. Proceedings of the 3rd International Conference on
Software Quality Management, Sevilla, Spain, pp. 435–444 (1995).

Yang, X.: Automatic software test data generation from Z specifications using evolutionary
algorithms. PhD Thesis, University of Glamorgan (1998).

Tracey, N.; Clark, J.; McDermid, J. and Mander, K.: A Search Based Automated Test-Data
Generation Framework for High-Integrity Systems. Journal of Software Practice and
Experience, January 2000.

Research and Technology

Wegener, Software Technology, Slide 55

Evolutionary Testing

References: Safety and Robustness Testing

Tracey, N.; Clark, J. and Mander, K.: The Way Forward for Unifying Dynamic Test Case
Generation: The Optimisation-Based Approach. Proceedings of the IFIP International
Workshop on Dependable Computing and Its Applications, Johannesbourg, South Africa,
pp. 169-180 (1998).

Tracey, N.; Clark, J.; McDermid, J. and Mander, K.: Integrating Safety Analysis with Automatic
Test-Data Generation for Software Safety Verification. Proceedings of the 17th International
System Safety Conference, pp. 128-137 (1999).

Mandrioli, D.; Morasca, S. and Morzenti, A.: Functional Test Case Generation for Real-Time
Systems. Proceedings of the 3rd IFIP Working Conference on Dependable Computing for
Critical Applications, Palermo, Italy, pp. 29-61 (1992).

Schultz, A.; Grefenstette, J. and Jong, K.: Test and Evaluation by Genetic Algorithms. IEEE
Expert, vol. 8, no. 5, pp. 9-14 (1993).

Research and Technology

Wegener, Software Technology, Slide 56

Analytical Techniques

Analytical Quality Assurance

Simulation

Review

Inspection

Walkthrough

Static Analysis

Symbolic Execution

Model Checking

Mathematical Proof

Static Techniques

Informal Techniques

Formal Techniques

Dynamic Techniques

Debugging

Diversification Testing

Evolutionary Testing

Statistical Testing

Functional Testing

Structural Testing

Test

