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Conclusion, Future Work

Open Problems

Evolutionary Testing and its Applications
- safety testing
- structural testing
- mutation testing
- robustness testing
- testing of temporal behaviour

Dynamic Testing - Test Methods
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Software Development Requirements

Introduction and Motivation

 Increasing amount of software
in products in almost all areas

 Software as differentiating 
factor for competitive
advantage

 Increasing
complexity of
systems

 Increasing significance 
of software in safety 
relevant areas

 High requirements for software 
based systems through norms,
standards and legal regulations

High costs and greater  High costs and greater 
time commitment for 
system development 
and maintenance

 High consequential 
costs due to faults

 Cost-effective
development and
time-to-market 
crucial for
competitiveness
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Testing in Practice

Introduction and Motivation

System and
acceptance 
testing

Other development activities

Module and
integration 
testing

50

30

20

Test automation

Test methods

• Testing is the most important analytical quality assurance method
• Testing carries a considerable cost-factor within system development

• Testing is not performed systematically 

• low error detection rate

• high costs

• Testing is too resource intensive

Average distribution of software development costs for embedded systems
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Test Objectives

 an exhaustive test is usually impossible

Dynamic Testing

Test data has to be selected according to certain test criteria

Weak Features

Strong Features

Through system execution with selected test data the test aims to
 detect errors in the system under test and
 gain confidence in the correct functioning of the test object

 takes into consideration the real environment (e.g. target computer, compiler) and
 tests dynamic system behaviour (e.g. run-time behaviour, memory space requirement)
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Dynamic Testing

Functional Testing

Mutation Testing

Test Methods

Structural Testing

Statistical Testing

Evolutionary Testing
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Dynamic Testing

Mutation Testing

Test Methods

Structural Testing

Statistical Testing

Evolutionary Testing

Equivalence Partitioning

Boundary Value Analysis

Functional Testing

Category-Partition Method

Classification-Tree Method

• test case design performed on basis of 
specification

• most important test approach

• widely used

• test size difficult to quantify (coverage of 
requirements, function points, ...)

• difficult to automate (only on basis of 
formal specification techniques)
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Dynamic Testing

Functional Testing

Mutation Testing

Test Methods

Structural Testing

Statistical Testing

Evolutionary Testing
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Dynamic Testing

Mutation Testing

Test Methods

Statistical Testing

Evolutionary Testing

Functional Testing

Control-Flow Oriented Methods

Data-Flow Oriented Methods

• test case design is performed on the 
basis of the program structure

• common test approach (included in 
many standards)

• not possible to check whether all 
requirements have been implemented

• difficult to automate (limits of symbolic 
execution)

• often full coverage is not achievable

Structural Testing

• Statement Testing
• Branch Testing
• Condition Testing
• Path Testing
• . . .

• All-Defs
• All-Uses
• All-DefUse-Chains
• . . .
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Dynamic Testing

Functional Testing

Mutation Testing

Test Methods

Structural Testing

Statistical Testing

Evolutionary Testing
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Dynamic Testing

Mutation Testing

Test Methods

Structural Testing

Evolutionary Testing

Functional Testing

According to operational profile

Random Testing

• test data generation in accordance with 
pre-determined probability distribution

• statistically assured statement of reliability

• extensively capable of automation

• used in telecommunications industry 

• operational profile hard to determine, 
especially for new systems

• specific test-relevant value combinations 
produced only with little probability

• extensive test evaluation, if no test oracle 
available

Statistical Testing
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Dynamic Testing

Functional Testing

Mutation Testing

Test Methods

Structural Testing

Statistical Testing

Evolutionary Testing
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Dynamic Testing

Functional Testing

Mutation Testing

Test Methods

Structural Testing

Statistical Testing

Evolutionary Testing

• test cases built in order to kill mutants 
(slightly changed versions) of the original 
program

• research oriented, limited usage in 
industrial practice

• provides no guidance on how to define 
the test cases, difficult to automate
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Dynamic Testing

Functional Testing

Mutation Testing

Test Methods

Structural Testing

Statistical Testing

Evolutionary Testing
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Evolutionary Testing

Functional Testing

Mutation Testing

Test Methods

Structural Testing

Statistical Testing

• test data generation uses metaheuristic 
search techniques like evolutionary 
computation

• test objective has to be defined numerically 
and transformed into an optimisation 
problem (suitable fitness function)

• fitness values are based on the monitoring 
results for test data

• test object’s input domain forms search 
space 

• test object’s input parameters represent the 
decision variables for the search

Selection

Reinsertion

Recombination

Mutation

Initial
Population

Individuals

Test Data

Monitoring
Fitness 
Values

Test
Execution

Test Results

Termination ?

Evaluation

Safety Testing

Robustness Testing

Temporal Behavior Testing

Evolutionary Testing

1

2
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Evolutionary Testing

Selection

Reinsertion

Recombination

Mutation

Test Results

Termination ?

General Procedure Initial Population
(random generation)
1: 19 65 30 99 44 
2:  4 13 22 17 56
3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67Individuals

Test Data

Monitoring

Fitness Values

Test
Execution Evaluation
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General Procedure

Evolutionary Testing

Selection

Reinsertion

Recombination

Mutation

Test Results

Termination ?

Individuals

Test Data

Monitoring

Fitness Values

Test
Execution Evaluation

1: 0.51
2: 0.75
3: 0.20
4: 0.21
...
N: 0.33

Initial Population
(random generation)
1: 19 65 30 99 44 
2:  4 13 22 17 56
3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67
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General Procedure

Evolutionary Testing

Reinsertion

Recombination

Mutation
Individuals

Test Data

Monitoring

Fitness Values

Test
Execution

Test Results

Termination ?

Evaluation 1: 0.51
2: 0.75
3: 0.20
4: 0.21
...
N: 0.33

Selection

3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

Initial Population
(random generation)
1: 19 65 30 99 44 
2:  4 13 22 17 56
3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67
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General Procedure

Evolutionary Testing

Reinsertion

Mutation
Individuals

Test Data

Monitoring

Fitness Values

Test
Execution

Test Results

Termination ?

Evaluation

Selection

3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

1: 0.51
2: 0.75
3: 0.20
4: 0.21
...
N: 0.33Recombination

7: 29 48 59 49 90
8: 19 34 23 99 78
...

N’: 23 45 69 43 81

3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

Initial Population
(random generation)
1: 19 65 30 99 44 
2:  4 13 22 17 56
3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67
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General Procedure

Evolutionary Testing

Reinsertion

Individuals

Test Data

Monitoring

Fitness Values

Test
Execution

Test Results

Termination ?

Evaluation

Selection

Recombination

7: 29 48 59 49 90
8: 19 34 23 99 78
...

N’: 23 45 69 43 81

3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

Mutation

7: 29 39 59 82 90
8: 19 34 23 99 78 
...

N’: 23 45 69 70 81

Initial Population
(random generation)
1: 19 65 30 99 44 
2:  4 13 22 17 56
3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

1: 0.51
2: 0.75
3: 0.20
4: 0.21
...
N: 0.33
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General Procedure

Evolutionary Testing

Individuals

Test Data

Monitoring

Fitness Values

Test
Execution

Test Results

Termination ?

Evaluation

Selection

Recombination

Mutation

7: 29 39 59 82 90
8: 19 34 23 99 78 
...

N’: 23 45 69 70 81

Reinsertion

3: 29 48 23 49 78
4: 89 34 59 39 90
7: 29 39 59 82 90
8: 19 34 23 99 78 
...
N: 23 45 69 70 81

Initial Population
(random generation)
1: 19 65 30 99 44 
2:  4 13 22 17 56
3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67

1: 0.51
2: 0.75
3: 0.20
4: 0.21
...
N: 0.33

7: 29 48 59 49 90
8: 19 34 23 99 78
...

N’: 23 45 69 43 81

3: 29 48 23 49 78
4: 89 34 59 39 90
...
N: 23 62 69 43 67
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Application

Evolutionary Testing

Selection

Reinsertion

Recombination

Mutation

Termination ?

Individuals

Test Data

Monitoring

Fitness Values

Test
Execution Evaluation

Essential: Definition of suitable fitness 
function representing test objective
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Safety Testing

Aim
• For safety critical systems, safety constraints are specified, which under no circumstances 

should be violated. If test data results in a violation of safety constraints  error

Idea
• Generate test data in order to violate safety constraints 
• Fitness function defined as the distance from violating safety condition

Work
• Tracey et al., University of York

Safety condition: speed  150 mph

if F = 0
test successful, safety condition violated

Generated test data

kspeedF 150

spee
d k: smallest step size

Evolutionary Testing - Applications
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Safety Testing

Generated test data

SC: speed  150 mph

Examples of constructing fitness functions

expression fitness, if exp. fitness, if 
false exp. true

a = b F = abs(a - b) F = 0
a  b F = k F = 0
a < b F = (a - b) + k F = 0
a  b F = (a - b) F = 0
a > b F = (b - a) + k F = 0
a  b F = (b - a) F = 0

a || b F = min(f(a), f(b)) F = 0
a && b F = f(a) + f(b) F = 0
k: smallest step size

Fault-Tree Analysis (Leveson, Harvey)

SC: wheel_speed <
5160 rpm

SC: Gear < 5 ||
(motor_speed < 7000 rpm)

F = f(5 - Gear) +
f(7000 - motor_speed );

F =  5160 - wheel_speed

if F = 0 then /* test successful, SC violated

Evolutionary Testing - Applications
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Structural Testing

Aim
• Generate test data to cover structural test criteria automatically
• Since code coverage is often difficult and too expensive, it’s often neglected. Appropriate 

tools do not exist 
• Automation promises to reduce testing effort (time and expenses) during the determination 

of relevant test data   

Idea
• Coverage oriented approach:

• Test data (individuals) that cover many nodes of code receive high fitness values
• Distance oriented approach:

• Test partitioned into single sub-goals
• Separate fitness function for each sub-goal measures distance from fulfilling branch 

predicates in desired way

Work
• Coverage oriented: Watkins, Roper, Weichselbaum, Pargas et al. 
• Distance oriented: Xanthakis et al., Sthamer, Jones et al., Michael et al.,Tracey et al.,

Baresel, Wegener et al.

Evolutionary Testing - Applications
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Coverage Oriented Approaches

Evolutionary Testing - Applications

Individual 1 Individual 2

Number of covered branches

Individual 1 F = 3

Individual 2 F = 5

Fitness of individual for statement and branch coverage

 based on the number of statements or branches 
covered by corresponding test datum (Roper, 
Weichselbaum)

 based on the number of control-dependence graph 
nodes covered by test datum (Pargas et al.)

Fitness of individual for path coverage

 1/overall_execution_frequency_of_path (Watkins)

Results
• promising results, better performance than

random testing
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Evolutionary Testing - Applications
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ET 2900 9500 14500 13200

RT 4000 15900 125900 110000

RT / ET 1,379310345 1,673684211 8,682758621 8,333333333

Bisect_state Fourballs_state Tritype_state Tritype_branch

Results achieved with coverage oriented approach (reported by Pargas) 

ET and RT achieve full coverage for all test objects

Results of Structural Testing
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Distance Oriented Approaches

Target

Level 4

Level 3

Level 2

Level 1

1. Approximation level

• Identify relevant branching statements for target node 
on basis of control-flow graph

• Relevant branching statements can lead to a miss of the 
desired target

• In this sense approximation-level corresponds to  
‘distance from target’

 Fitness = Approximation_Level + Distance

2. Distance measurement in the branching 
statement with undesired branching

• Evaluation of predicate in a branching condition in the 
same manner as described for safety testing, e.g.                           
if A = B           Distance = | A - B |

Evolutionary Testing - Applications
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Results of Structural Testing

Evolutionary Testing - Applications
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RT / ET 11,80863139 5,128403745 19,92683959 35,47735587

Triangle_int Triangle_float Complex My_atof

Results achieved with distance oriented approach (Wegener, Baresel, Sthamer)

• ET requires less test cases compared to RT (by a factor of between 5 to 35)

• ET achieves full branch coverage for all test objects, RT achieves between 46% and 
98% on average  
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Mutation Testing

Evolutionary Testing - Applications

Aim
• Generate test data to detect each of the mutants

Idea
• Execute mutated (changed) program parts and try to produce different

output with respect to original program
• Fitness function - based on structural testing (distance oriented

approach) - adds elements which guide the search to test data
causing different output behavior

Work
• Tracey et al., University of York
• Bottaci, University of Hull

Results
• 6 to 48 mutants for five different functions (34 to 591 LOC)
• ET killed all mutants, RT killed all mutants for three functions only

=



Research and Technology

Wegener, Software Technology, Slide 30

Robustness Testing 1

Evolutionary Testing

Aim
• Robustness testing of operating system API

Idea
• Assumption: Developers tend to test normal function. Lack of testing for error handling and 

exceptions
• Generate test data in order to raise exceptions
• Individual represents sequence of API calls (max. 15) with parameter values 
• Fitness function considers return status of API calls (ok, nok, exception) and characteristics of 

sequence, e.g. length of sequence

Work
• Boden and Martino, IBM

Results
• within a few days of testing two unknown exceptions were found

Evolutionary Testing - Applications
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Robustness Testing 2

Evolutionary Testing

Aim
• Find interesting fault scenarios for robustness testing of autonomous fault-tolerant vehicle 

controller. To which extent does fault activity influence mission performance? 

Idea
• Generate fault scenarios simulating sensor faults and actuator faults to test robustness
• Individuals represent starting condition and set of fault triggers
• Find scenarios with minimum number of faults which lead to controller failures
• Find scenarios with maximum number of faults but successful controller operation

Work
• Schultz et al., Navy Center for Applied Research in AI

Results
• various interesting scenarios found which allowed system designers to improve the 

controller’s robustness

scoreactivityfault
fitness

*_

1


















score =
1 if crash landing

2 if abort

[3,10] if safe landing

Maximization Minimization

Evolutionary Testing - Applications
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Testing Real-Time Constraints

Evolutionary Testing - Applications

Aim
• Temporal behaviour of real-time systems is erroneous when

input situations exist for which the computation violates the
specified timing constraints

Idea
• Find test data with longest and shortest execution times

to check whether they cause temporal error
• Fitness values for individuals based on execution times of 

corresponding test data

Work
• Wegener et al., DaimlerChrysler AG
• Tracey et al., University of York
• Puschner et al., TU Vienna
• Related work on testability:

Gross et al., Fraunhofer Gesellschaft

upper

bottom

time limit
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Evolutionary Testing - Applications

Results
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variation between ET and RT 
results when searching longest 
and shortest execution times 
for various examples (in %)

•for all test objects (except 
Motor VI) ET results are 
superior to RT

•for several test objects 
variances > 50%

directed search of ET 
considerably more powerful 
than RT
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Comparison of test runs for evolutionary testing and random testing when searching the 
longest execution time for railroad electronics example

Detailed Analysis of Selected Results

Generation
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q
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Evolutionary Testing - Applications
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Computer Graphics Example: Results Platform 1

The shortest and longest execution times (in processor cycles) found by evolutionary 
testing (ET), functional testing by students and random testing (RT)

400 450 500 550 600 650 700 1600 1700 1800 1900 2000 2100 2200

Student 1

Student 9
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Student 6
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Student 4

Student 2
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Student 18

Student 3

Student 17
Student 16
Student 15

Student 7

Student 14
Student 13
Student 12
Student 11
Student 10

RT
 4

66

ET
  4

52

ET
  2

17
6RT

 2
15

0

Evolutionary Testing - Applications
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Computer Graphics Example: Results Platform 2

340 360 380 400 420 440 460 1450 1500 1550 1600 1650 1700 1750 1800 1850
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The shortest and longest execution times (in processor cycles) found by evolutionary 
testing (ET), functional testing by students and random testing (RT)

Evolutionary Testing - Applications
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Computer Graphics Example: Results Platform 3

100 120 140 160 180 200 420 440 460 480
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The shortest and longest execution times (in processor cycles) found by evolutionary 
testing (ET), functional testing by students and random testing (RT)

Evolutionary Testing - Applications
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Results Engine Control

Results of FST 
in each case as 
100 %
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Comparing the longest execution times from evolutionary testing (ET), functional and structural 
testing (FST) as well as random testing (RT) for the engine control tasks (execution times in s)

Evolutionary Testing vs. Functional and Structural Testing
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Further Applications

Evolutionary Testing - Applications

• Functional Testing
Generating test data for formally specified test cases. Fitness function is similar to distance 
measurement for safety and structural testing
Jones et al., Yang

• Assertion Testing 
Generating test data to violate assertions in program code (assert()). Fitness function is 
distance from violation of the asserted conditions
Tracey et al.
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Configuration of Search

Open Problems

In principle, no search technique available which guarantees optimal solutions independent of 
search space structure

• selection of search technique
• configuration of search technique, e.g. evolutionary operators

different test objectives

different test objects

different structures of search space
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Stopping Criteria

Open Problems

• successful test
• error found (safety constraints or timing constraints violated, API exception occurred)
• each non-equivalent mutant killed (mutation testing)
• full coverage reached (structural testing)

• difficult to decide when to stop a so far unsuccessful test
• the test object could be correct
• errors have not yet been found but may be detected if

test is continued
• program structures not covered might be infeasible

 Common quantitative termination criteria for evolutionary algorithms 
such as

• number of generations
• number of target function calls or
• computation time

are unsatisfactory. They do not take the test progress into account
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Reliability of Results

Problem Areas

What is the probability that

 a module is safe if no violation of safety properties have been found during 

evolutionary testing?

 no essentially longer or shorter execution times exist than those found through 

evolutionary testing?

 statements, branches, or paths not executed during evolutionary testing are 

infeasible?

 each mutant not killed by evolutionary testing is equivalent to the original

program?  

Reproducibility

Different test runs produce different results (test data sets)
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Testability of Systems

Problem Areas

Logical dependencies between test objects‘ input parameters complicate test data 

generation

if a > 0  b < x1

if a < 0  b > x2

if a = 0  b = x1

System states lead to noisy fitness function (different fitness values for the same test datum)

How to deal with individuals not representing a valid test datum?

 Generate new individual and replace

 Map to valid test datum

 Execute as robustness test, ensure high fitness value (no selection)
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Boolean Variables

Problem Areas - Structural Testing

 No difference in objective values => no guidance for the evolutionary search

Narrowing the Search Space by Nested Conditions  

 Objective values based only on executed program parts = > Undesirable convergence of 

population leads to reduction of search space (reason: short circuit execution)

if (b == True) {
...

Results in plateaus for measuring whether or not the 
conditions are met. No information to direct the 
search to another plateau

if (A == 0 && B == 0 && C == 0) {
...

if (A == 0) {    
if (B == 0) {  

if (C == 0) {
... 

if (strcmp(a, b)) {
...



Research and Technology

Wegener, Software Technology, Slide 45

Different Ways to Target Node 

Problem Areas - Structural Testing

 How should different paths to target node be handled? Should a certain path be 

prioritized or should all possible paths be considered equal? 

Prioritization might result in selection of a path difficult to execute

If all paths are dealt with equally the recombination of good individuals might result in 

worse individials 

Target
Node

Individual BIndividual A Individuals A and B are close to target node

What kind of individual results from the recombination of the two?

Which distance should be considered for the evaluation of 
individual B?
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Loops 

Problem Areas - Structural Testing

 What kind of objective function is needed for poorly structured loops with several exits?

The more iterations executed the better
the objective value should be

Individual B

Target
Node

Individual A

Func loop() {
for (i=0, i < 20, i++) {       

if (a[i] > b[i]) return;
}
/* target_node */

}
Func loop() {

i=0;
while (True) {

if ( i == 20 )
break;

if (a[i] > b[i]) return;
i++;

}
/* target_node */

}

???
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Conclusion

Conclusion, Future Work

 Evolutionary Testing is a new method for the automation of test case design

 Based upon transformation of test aim into an optimization problem, subsequently solved 

with the assistance of metaheuristic search methods

 Employed by various researchers to solve different test objectives. Consistently excellent 

results were attained

 May be utilised as an independent test method for certain test objectives 

 Can also be employed for the automation of other test methods

 Due to high level of automation and good results, Evolutionary Testing is well placed to 

supplement existing test methods. It contributes to better product quality and promotes  

efficient development 

 However, more research remains to be done to answer outstanding questions
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Future Work

Conclusion, Future Work

• seeding of test data into initial population, e.g. for structural testing, and temporal behaviour
testing

• selection of search technique and configuration of evolutionary operators according
to test object metrics

• dynamic configuration of evolutionary operators during test run
with respect to test progress

• test termination using cluster analysis

• develop further application fields e.g. 
regression testing and back-to-back 
test of control systems, testing 
interactive systems, testing 
object-oriented software
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