
First International Workshop on Automated Program Analysis, Testing and Verification

Automated Testing of Real-Time Tasks

Joachim Wegener, Roman Pitschinetz, Harmen Sthamer
DaimlerChrysler AG, Research and Technology, Alt-Moabit 96a, D-10559 Berlin, Germany

Joachim.Wegener@daimlerchrysler.com
Roman.Pitschinetz@daimlerchrysler.com
Harmen.Sthamer@daimlerchrysler.com

The development of embedded systems is a crucial
area of responsibility in industrial practice. Many
embedded systems need to meet real-time
requirements. This adds a new dimension to the
testing of such systems – not only the logical
behavior, but also the temporal behavior of these
systems requires thorough testing. In comparison
with conventional software systems, the testing of
embedded systems is more complex due to several
specific technical characteristics such as the
development in host-target environments, the intense
interaction of the systems with the real application
environment, and the limited resources of the target
system. In order to facilitate systematic and largely
automated testing in defiance of the complexity of
real-time systems powerful testing tools are
required. Therefore, in this work the testing system
TESSY has been extended in order to support the
total testing life-cycle of real-time tasks. New
components allow a thorough examination of the
logical as well as the temporal behavior of the tasks.
The logical behavior is tested by means of function-
oriented and structure-oriented testing methods; the
testing of temporal behavior is automated by
evolutionary testing.

TESSY [1] concentrates mainly on test case design,
test execution, monitoring, test evaluation, and test
documentation. TESSY automates all test activities
except the test case generation for examining logical
program behavior. In order to automate the test
execution, the required test drivers are generated,
communication between host and target system is
automatically built, the program code is
instrumented and coverage analysis is performed,
and the execution times on the target system are
measured. Regression testing is also entirely
automated by TESSY.

For the generation of functional test cases, TESSY
uses the classification-tree method [2]. TESSY
therefore, contains the classification-tree editor, CTE
[3]. Branch testing is supported by the structure-
oriented test method. It is possible to instrument the
program code to record the branches executed
during functional testing and to define the amount of
branch coverage obtained. On the basis of this
information, the functional test may be further
improved or expanded by structure-oriented test
cases. This test strategy guarantees an extensive test
of the logical program behavior. The test can be run

with or without instrumentation in order to exclude
side-effects from the instrumentation. The results
generated from the test object will then be
automatically compared with each other and
deviations documented in the generated test
documentation.

The most important property, however, is the
automation of testing temporal behavior by means of
evolutionary testing. Errors in the temporal behavior
of real-time systems usually result from a violation
of specified timing constraints. The tester’s task is to
find input situations that result in the maximum
execution times. If the execution times exceed the
specified constraints, an error has been detected. In
evolutionary testing the search for the longest
execution time is considered a discontinuous,
nonlinear optimization problem, with the input
domain of the test object as search space, sets of test
data as decision variables, and execution times as
objective values. In order to solve this optimization
problem, evolutionary algorithms are used to
approximate the longest execution times of a test
object within several generations. The application of
evolutionary algorithms for test data generation is
known as evolutionary testing. Previous works have
shown that evolutionary testing is superior to
random testing [4] and systematic testing [5] when it
comes to examining the temporal behavior of real-
time systems.

Logical and temporal behavior testing are combined
through seeding. Test data collected by the tester for
the functional test are integrated into the initial
population of the evolutionary test. This means that
the evolutionary test benefits from the tester’s
knowledge concerning the functions and internal
structures of the test object. The search does not
commence with a randomly generated population.

The first industrial application of TESSY with the
set of properties described in this paper was initiated
last year for testing an engine control system
containing more than 20 different tasks. All tasks
were tested for their logical program behavior with
the classification-tree method and complete branch
coverage for all the tasks was reached. Further, six
time-critical tasks have been tested for their
temporal behavior with evolutionary testing. To
avoid probe effects (deviations from actual run-time
behavior) instrumentation is turned off for the tasks.

The number of input parameters of these tasks varies
from 9 to 18 with a number of program lines set
between 39 and 119, the static program paths differ
from 1 to 37 million and the cyclomatic complexity
from 1 to 27. For each task evolutionary testing
generated between 7,500 and 15,000 sets of test
data. The target processor is the Siemens C167 with
1 Mbytes SRAM and with a speed of 20 MHz. The

testing of one single task took approximately 1 hour
and all tests were carried out on the target system
that has been designated for future use in cars. The
execution times were determined using hardware
timers of the target environment with a resolution of
400 ns. The results of the evolutionary tests
compared with the execution times determined by
the developers’ tests are shown in Table 1.

Longest execution time in µs Program paths Cyclomatic
task

Evolutionary test Developer test

Lines of
code

No. of
parameters Complexity

1 69,6 µs 67,2 µs 41 18 224 10

2 120,8 µs 108,4 µs 119 18 37.748.736 27

3 112,0 µs 108,4 µs 98 17 1 1

4 68,8 µs 64,0 µs 81 32 60.480 23

5 59,6 µs 57,6 µs 39 14 408 11

6 58,4 µs 54,0 µs 56 9 36.864 18

Table 1: Maximum execution times of engine control tasks determined by evolutionary testing and developers’ tests

These TESSY extensions described have proved to
be highly applicable in practice for testing an
engine control system. Both, the logical and the
temporal behavior have been thoroughly tested. The
deployment of the CTE methodology has been
approved and utilized by the developers in order to
generate systematic test cases that obtained 100%
branch coverage. All other test activities are fully
automatically executed on the target system,
specifically the testing of the temporal behavior.
For the 6 tasks testing the temporal behavior, longer
execution times were found with the evolutionary
test than with the developers’ tests. This proved to
be the case even though evolutionary testing treats
the software as black boxes, whereas developers are
familiar with the function and structure of the
software and achieve 100% branch coverage. An
explanation might be the use of system calls,
linkage, and compiler optimization whose effects
on temporal behavior can only be guessed with
difficulty by the developers. However, it should be
noted that the execution times determined did not
exceed the specified timing constraints for any of
the tasks. The intensive testing has certainly
strengthened the developers’ confidence in a correct
temporal behavior of the system. With an average
number of 7 regression tests for each task,
TESSY’s entirely automated execution of
regression testing has proved extremely useful.

Future work on testing real-time systems will focus
on how static analysis techniques could support
evolutionary testing, e.g. for search space reduction,
to find a selection of evolutionary algorithms for
test use, and to obtain information on internal states
of the test object that may influence its temporal
behavior. Further, the combination of evolutionary
testing methods with static analysis techniques for
the estimation of worst case execution times is
meant to facilitate a precise forecast of the actual
longest execution times of tasks [6]. Future plans,

include the expansion of TESSY for integration
testing and the examination of the suitability of
evolutionary testing for system testing.

References:
[1] Wegener, J. and Pitschinetz, R. (1994): TESSY

- Yet Another Computer-Aided Software
Testing Tool? Proceedings of the European
International Conference on Software Testing,
Analysis & Review EuroSTAR ’94, Bruxelles,
Belgium.

[2] Grochtmann, M. and Grimm, K. (1993):
Classification Trees for Partition Testing.
Software Testing, Verification & Reliability,
vol. 3, no. 2, pp. 63-82, Wiley.

[3] Grochtmann, M. and Wegener, J. (1995): Test
Case Design Using Classification Trees and
the Classification-Tree Editor CTE.
Proceedings of the Software Quality Week
’95, San Francisco, USA.

[4] Wegener, J. and Grochtmann, M. (1998):
Verifying Timing Constraints of Real-Time
Systems by Means of Evolutionary Testing.
Real-Time Systems, vol. 15, no. 3, pp. 275-
298, Kluwer Academic Publishers.

[5] Mueller, F. and Wegener, J. (1998): A
Comparison of Static Analysis and
Evolutionary Testing for the Verification of
Timing Constraints. Proceedings of the IEEE
Real-Time Technology and Applications
Symposium RTAS ’98, pp. 144-154, Denver,
USA.

[6] Wegener, J., Pohlheim, H., and Sthamer, H.
(1999): Testing the Temporal Behavior of
Real-Time Tasks using Extended Evolutionary
Algorithms. Proceedings of the European
International Conference on Software Testing,
Analysis & Review EuroSTAR ’99,
Barcelona, Spain.

