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Abstract—In a model-based approach, models are considered
as the prime artefacts for the software specification, design and
implementation. Quality assurance for program codes has been
discussed a lot, however equivalent methods for model quality
assessment remain rareness. Assessing quality is of particular im-
portance for technical models (e.g. MATLAB/Simulink/Stateflow
models), since they are often used for production code generation.
Our main contribution is a quality model based on ISO/IEC 9126,
which defines the internal model quality as well as measures
for the assessments. Our quality model shall not only show
improvement potentials in model, but also provide evidence about
quality evolution of a model.

I. INTRODUCTION

In the last decade, model-based development has become

common practice in a whole variety of branches and for a

wide range of applications. In such an approach, models are

considered as the prime artefacts for the software specification,

design and implementation. In many domains (e.g. automotive

and aviation), models become larger and more complex due

to versatile functional and/or always stricter safety-related re-

quirements. With growing size and complexity models become

difficult to maintain and to alter, if they were not developed

with adherence to distinct aspects of quality, such as read-

ability, understandability and analysability. Further, executable

models, such as MATLAB/Simulink/Stateflow models12, are

often used for (either manual or automatic) production code

generation as well. Since debugging at a late development

phase (i.e. after production code generation) is time consuming

and costly, it is desirable to detect potential errors/faults at the

earliest possible stage.

Surprisingly, although Simulink has established itself as

de facto industry standard in model-based applications, there

exist only few work concerning the quality, especially the

non-functional quality of such models. Above all, there has

not existed a clear definition of model quality yet. The state

of practice regarding model quality is applying modelling

guidelines. An example is the MAAB guidelines [1] for

automotive applications, which defines various modelling pat-

terns, naming conventions, rules of thumb (e.g. block usage,
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nology (ICIT), Athens, Greece, 19-21 March 2012.

1MATLAB, Simulink, and Stateflow are registered trademarks of The
MathWorks, Inc.

2For simplicity, we use Simulink model to refer model that was built with
the MATLAB/Simulink/Stateflow toolkit in the rest of this paper.

Simulink/Stateflow partitioning, subsystem hierarchies, . . . ).

Such guidelines are useful for modellers as a reference for

quality assurance task. However, neither are these guidelines

related to any quality characteristics, nor do they provide

any method/criteria for quality assessment. Existing model

check tools (e.g. Model Advisor [2]) focus mainly on proper

conditions and configuration settings and guideline confor-

mance. Even though these tools are able to correct (some) rule

violations automatically, they do not provide any indication

about respective model quality either. Based on talks with

modellers and feedbacks from automotive OEMs we notice

that there is a huge need in rigorous model quality assessment

methods.

Thus our research is aimed to analyse and to assess the

internal (i.e. non-functional) model quality, especially the

maintainability by means of static analyses. The purpose of

this paper is to introduce a quality model which we have

developed for Simulink models in automotive applications.

Our quality model is derived from the international standard

for software product quality ISO/IEC 9126-1 [3]. We focus on

model maintainability and refined six well-chosen subcharac-

teristics. This paper will discuss how these quality attributes

can be defined and decomposed regarding specialities of

Simulink models, so that they can be measured and prepared

for assessment.

The remainder of the paper is organised as follows: In

Section II we give a brief overview of ISO/IEC 9126, after

that, in Section III we share some observations on quality

issues regarding practical Simulink models. In the follow-

ing Section IV our refined quality model will be presented,

whereat each quality characteristics is discussed in detail.

In Section V our quality assessment prototype is briefly

described. We treated related work in Section VI and conclude

this work in Section VII.

II. ISO/IEC 9126

The standard ISO/IEC 9126 with title Software engineering

— Product quality consists of four parts:

• ISO/IEC 9126-1: Quality model

• ISO/IEC TR 9126-2: External metrics

• ISO/IEC TR 9126-3: Internal metrics

• ISO/IEC TR 9126-4: Quality in use metrics

The part 1 [3] describes a two-part quality model for software

product: a) internal quality and external quality, and b) quality



in use. For internal and external quality six characteristics

(functionality, reliability, usability, efficiency, maintainabil-

ity and portability) are specified and each characteristic is

subdivided into several subcharacteristics (cf. Fig. 2). As

supplementation to part 1 the remaining three parts (technical

reports) provide a suggested set of software quality metrics

from perspective external quality, internal quality and quality

in use, respectively.

Since this quality model is rather generic, it may be applied

to any software product by tailoring to a specific purpose [4].

However, the metrics defined in ISO/IEC 9126 “provide only

guidance for a posteriori evaluation of characteristics based

on effort and time spent on activities related the software

product. . . are not measured on the system itself and lack

predictive power” [5].

III. OBSERVATIONS ON PRACTICAL MODELS

Simulink models in automotive applications can be roughly

categorised into three groups: physical models, behaviour

models and implementation models. The first two model

groups are mainly used for simulation purpose while the latter

is code-generation-oriented. Despite the different usages, we

have observed some common issues by all kinds of models

in practice. Several examples are showed in the following

regarding three main model aspects (architecture, design,

modelling):

• Model architecture

– Subsystems contain too many3 direct child elements

(blocks, signal lines)

– Excessive subsystem interfaces

– High subsystem hierarchy (nesting) level

– Marginal (or even no) description/comment for the

modelled plant/functionality

• Model design

– Copy&paste model parts

– Hardly comprehensible/understandable data and con-

trol flow (e.g. due to excessive use of Goto/From

connections)

• Modelling

– Non-uniform naming conventions and block colour-

ings

IV. INTERNAL MODEL QUALITY

The importance of software maintainability has been widely

acknowledged (e.g. [6], [5], [7]). As mentioned in the intro-

duction section, Simulink models are likely to be used for

automatic production code generation. Although a good code

generator might be able to make certain optimisation during

the process, negative impacts due to bad modelling style(s)

are still non-negligible. Further, either for model review or

for (dynamic) model test it is required that a model has to

be well understandable, which is unfortunately not always the

case (Fig. 1 shows such a “bad” example from the real world.).

3As a rule of thumb, “not too many” means that all blocks/lines/names of
a subsystem should be clearly readable when printed on one page A4 paper.

Another key issue in especially automotive applications is

variants management ( [8], [9], [10]), the authors of [11]

demonstrated that a powertrain control application with 218

algorithm model libraries might result in 3488 possible com-

ponent realizations. Whether a model is modular built, i.e.

whether a model is simply adaptable, plays an important role

on the maintenance effort.

Based on above considerations, we developed a quality

model containing six characteristics for assessing internal

quality of Simulink models: analysability, changeability, sta-

bility, testability, understandability and adaptability (cf. Fig.

2). We have excluded several quality (sub-)characteristics de-

fined in ISO/IEC 9126 from our quality model, either because

those characteristics are not applicable to Simulink models or

respective evaluations are out of scope of static analysis. In

the following, each of these characteristics will be outlined,

respective alignments in Simulink models are described, some

concrete analysis methods are presented as well. Note that

some characteristics are more or less correlated to each other,

i.e. some modelling aspects such as subsystem partitioning

have influence on all six characteristics. What we will describe

are those main factors which we believe play key role on the

respective characteristic.

A. Understandability

Whether a model is understandable or not, the answer

may vary from person to person, because understanding is

an internal process of humans. However, there do exist some

common factors which have influences on understanding a

Simulink model.

• Model hierarchy The Simulink software offers a kind of

blocks, i.e. Subsystem, which is able to group blocks as

well as other subsystems together and build a hierarchy

level. Although these hierarchies may be either solely

graphical or both graphical and functional4, it makes no

difference from the viewpoint of human understanding.

Partitioning a model into meaningful small subsystems

will considerably improve its readability and also un-

derstandability. Unfortunately there exists no published

approach for controlling or analysing such subsystem

partitions. As state of the practice, the building of

model hierarchies depends predominantly on modellers

themselves. Mancoridis et al. proposed an approach for

automatic recovery of the modular structure of a software

system from its source code [12]. Their idea was to re-

build the module boundaries to increase cohesion within

one module while at the same time reduce coupling

between modules—an optimization problem of finding

a best solution of high cohesion and low coupling for

the modules. The basis of this analysis is a so-called

Module Dependency Graph, the nodes of which denotes

4There are two kinds of subsystem blocks, virtual and non-virtual. Virtual
subsystem blocks offer only graphical organisation of blocks, these subsystem
borders will be flattened during model simulation and/or code generation.
While non-virtual subsystems are both graphical and functional.
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Fig. 1. A real world model from automotive applications (all signal names have been changed for confidential reason). Problems of this model include: 1)
no description of the modelled functionality, nobody (probably except the modeller him- or herself) knows what does this module do; 2) many unorganised
I/O signals (15 input and 10 output signals) lead to a complex module interface; 3) the I/O signals are not documented (e.g. meaning, unit and value range)
that makes it difficult to conduct tests on them; 4) understanding data flow and dependencies between submoduls is difficult because of excessive use of
Goto/From connections; 5) meanings of different block colourings are not described, which may lead to misinterpretation; 6) so many blocks in one model
window that without zooming in they are hardly readable.

the software modules and the edges represent the depen-

dence between the modules. Because Simulink models

are based on a data-flow paradigm and consist of blocks

and signal lines, which can be easily converted into nodes

and edges, respectively, to build a dependency graph. For

a more precise result, weights for different block types

may be applied, data dimension of each signal line may

come into consideration as well—a dependency graph

with weighted nodes and edges. Having a dependency

graph derived from model we might apply the established

optimisation algorithms to search for a best partition

of subsystems with high cohesion and low coupling.

Compare the calculated subsystem partition with the

existing one, we shall gain solid knowledge about the

model hierarchy for assessment at a further step.

• Model design Deploying appropriate modelling instru-

ments may greatly enhance understandability—naturally

is to use Simulink blocks for numerical operations and

use Stateflow for logical operations and scheduling tasks.

An intuitive method is to identify whether a function is

mainly logical or numerical operation related. A main

problem with such an analysis on existing models is how

to set boundary for a complete function, i.e. which blocks

and signal lines belong to this function and which not.

An applicable solution for this problem, is to use slicing

techniques to analyse data flow and control dependence of

the blocks [13]. Based on the dependence analysis results

we may separate one function from the others, then we

are able to determine whether a function was modelled

with appropriate blocks.

• Documentation This is a often neglected aspect in prac-

tice. Because many modellers think that a Simulink

model itself is already the documentation (due to its

graphical nature). Unfortunately, this is not the case (cf.

Fig. 1). An undocumented model may be more difficult

to understand as a well commented source code program

on the same algorithm. Ideally, each Simulink subsystem

should be documented/commented (just as one is required

to do so for each source code function). Thus here a

measure similar to metric comment rate for conventional

programming language can be applied.

There are also further aspects relating to model understand-

ability, such as signal line grouping, signal routing, naming

conventions, block layouts. Except that naming convention

is more or less defined within a company or a project, to

assess other three aspects empirical methods are required,

e.g. considering the number of blocks, number of signals and

model size.

B. Analysability

A model is easily analysable means that the effort required

to diagnose and localise model parts and error/fault causes is

minimum. It is assumed that the more complex5 a model the

more difficult is it to analyse.

• Model complexity (rather general description than con-

crete metrics, which shall be topic of next paper) We

are mapping several established complexity metrics for

conventional programming languages—Halstead metric

[14], McCabe’s metric [15] and Henry & Kafura’s met-

ric [16]—to assess model complexity. We use Halstead

metric to calculate model computational complexity; Use

McCabe’s metric to analyse model structural complexity;

Use Henry & Kafura’s metric to determine model infor-

mational complexity. All three complexities are combined

together to give an overall assessment for a whole model

or for a certain subsystem.

5In this work, we focus on system complexity, i.e. complexity related
to model structured design. The complexity of a algorithm itself is out of
consideration.
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Fig. 2. Breakdown of the external and internal quality into 6 main characteristics according to ISO/IEC 9126-1. Each characteristic is further subdivided
into several sub-characteristics. In this paper, we focus on all 4 subcharacteristics of maintainability, i.e. analysability, changeability, stability, and testability,
plus understandability and adaptability within usability and portability, respectively.

• Traceability Simulink models and/or libraries are often

versioned. It is important not only to document model

changes separately (e.g. in a separate document), but also

to note down the changes in model directly, which will

ease a model analysis. Unfortunately, this analysis of this

aspect mostly can only be carried out semi-automatically,

e.g. via search for keywords.

C. Changeability

Changeability describes the effort needed to make change

on model or to debug. Besides aforementioned well-defined

model hierarchy, two main influence factors may be ob-

servered:

• Model clone A vital influence on model change effort,

is played by duplicated model parts, i.e. copy&paste

model block groups. What makes a changing harder

is that model clones may have variants, i.e. there may

exist similar yet not 100% identical model parts. To

indentify such exact and approximated model clones exist

already several approaches (e.g. [17] [18]), however, how

to reduce the number of “false positives” remain an

open research problem. As of an assessment, generally

speaking, the number of exact model clones should be

minimized, as well as approximated model clones that

up to certain similarity grade.

• Data management How data are defined (i.e. either as

signal or as parameter) and where data are defined

(i.e. either in Base Workspace or in Model Workspace

or in Mask Workspace) have different consequence on

changeability, these effects shall be analysed qualitatively

in a empirical way.

D. Testability

Testability represents efforts needed to validate a model that

was changed.

• Module coupling When all modules are isolated from

each other, we will have an ideal model testability. The

more one module depends on the other, the harder is it to

test. To assess the module couplings we are to consider

connectivities between the modules, i.e. inter-connections

between subsystems. We adapted the proposed approach

in [12] to Simulink models.

• Module interfacing A speciality in Simulink models is

that signals may inherit properties such as sample time,

data type, signal dimension from a predecessor block

via back propagation. It is also possible to define signal

properties explicitly. This ”modelling flexibility” might

result in undesirable model behaviour and makes it harder

to test. We believe that each subsystem should have

explicitly defined inports and outports. However, how far

our assumption is applicable (or better saying, acceptable

by modellers) in practice is still an open question.

E. Adaptability

Adaptability indicates efforts needed to adapt a model to

different specified environments. This is especially meaningful

for the above mentioned variants management. Besides the

aforementioned model hierarchy and data management it is

common practice to build those basic and/or variant func-

tionalities as libraries or as model references. For this special

use case we suggest a qualitative analysis based on empirical

methods.

• Model hierarchy

• Data management

F. Stability

Stability is the robustness of a model against undesirable

effects due to model modification. In other words, the model

change impact should be hold as low as possible to achieve a

great stability against model changes.

• Change impact To analyse change impacts it is inevitable

to study data-flow and control dependence in model. To

achieve this, we apply slicing techniques, as supposed in

[13].

To apply above introduced quality model to Simulink mod-

els a set of metrics that capture different aspects of each quality

characteristics are required. Since we concentrate on static

analysis techniques for models, we do not include metrics

that are only retrievable via dynamic tests in our calculation.

Besides, by defining metrics we give preference to analyses

which require no more input information than that one can

get from a Simulink model directly. Some sample metrics are

listed in Table I.



Characteristics Metrics

Understandability

number of blocks

number of signal lines

number of signal line crossings

number of Goto/From block pairs

1−

number of blocks with annotation
number of blocks should have annotation

blocks layout size/available display area

Analysability

subsystem complexity

documentation rate of module change
number of improper configured logical blocks

number of all logical blocks
number of improper configured relational blocks

number of all relational blocks

Changeability number of cloned blocks
number of all blocks

Testability

coupling degree between subsystems
number of explicitly defined inports

number of all inports
number of explicitly defined outports

number of all outports

Adaptability
number of referenced models

number of all subsystems
number of linked library blocks

number of all subsystems

Stability average slice size per input signal

TABLE I
LIST OF SAMPLE METRICS

V. QUALITY ASSESSMENT PROTOTYPE

To facilitate automatic quality assessment we have devel-

oped a prototype. Basic idea of our prototype is 1) to collect

both explicit and implicit information of object Simulink

model; 2) to calculate various metrics; 3) to assess the cal-

culation results. Since Simulink model files (*.mdl) apply

a text-based format, most model information (we call this

explicit model information) is saved as plain-text and can be

retrieved via a text scanner (so that a MATLAB installation

is not necessary). For this task we adopted an open source

Simulink library6 that provides a Java parser for MDL files.

Remaining model information (we call this implicit model

information), such as contents of bus signals, propagated data

type, may be queried via Java MATLAB interface. For a

successful information collection it is required that object

Simulink model must be compilable as well as an installation

of MATLAB/Simulink/Stateflow. The calculation of metrics as

well as respective quality assessment run then automatically.

We have conducted several case studies with real world

models from automotive branches. The quality assessment

results are not only plausible but also positively accepted by

respective modellers. We shall present and discuss the case

study results in detail in another paper.

VI. RELATED WORK

Following McCall et al. [19] and Boehm et al. [20] various

approaches to software quality model have been proposed

(e.g. [21], [22], [23], [24], [25]). Most of these quality models

are based on a hierarchical structure consisting of factors,

criteria and metrics. Dromey’s quality model [26] defines a set

of structural forms, a set of quality-carrying properties and a

set of high-level quality attributes as well as interrelationships

between them.

6http://conqat.cs.tum.edu/index.php/Simulink Library

The quality model defined in ISO/IEC 9126 has been ap-

plied to various domains regarding quality evaluation. Kanel-

lopoulos et al. [27] propose a methodology for source code

quality and static behaviour evaluation of a software system.

Bansiya and Davis [28] introduce a hierarchical model for the

assessment of high-level design quality attributes in object-

oriented designs. Heitlager et al. proposed a practical model

for measuring software maintainability in [5], which discussed

several problems with the measure Maintainability Index and

presented a selection of measures and guidelines for aggre-

gating and rating them. Zeiss et al. [29] present an adaptation

of the ISO/IEC 9126 quality model to test specifications and

show its instantiation for test specifications written in the

Testing and Test Control Notation (TTCN-3).

Certain quality aspects of Simulink models have been

studied as well. Stürmer et al. [30] applied Halstead metric

[14] to calculate model complexity and acclaimed that their

calculation results coincided with expert expectation values.

Several approaches for clone detections for Simulink models

may be found in [17], [18] and [31], which demonstrated

satisfied clone coverage rates. A quality assessment approach

for Simulink models may be found in [32], in which a

FCM (Factor-Criteria-Metrics) framework for automatic model

quality rating was proposed. Highlight of this approach is an

extensible framework for model quality assessment, whereat

the factors and criteria and metrics are arbitrarily expandable.

VII. SUMMARY AND OUTLOOK

Based on the ISO/IEC 9126 we have developed a quality

model to assess internal quality of Simulink models. Fo-

cusing on maintainability, we outlined model analysis meth-

ods regarding analysability, changeability, stability, testability,

adaptability and understandability. We also mapped several

established measures for source code to Simulink models. The

proposed quality model and metrics have been realised in a

prototype and tested and refined with real-world models.

For further developments we are carrying out experiments

on large models to validate the measures and to examine the

scalability of our approach. We also look forward to develop

automatic clustering techniques for Simulink models, so that

we may give suggestions for model refactoring in future.

Quality assessment for Simulink models may not only be

able to reveal weak points in models in a early development

phase, in particular it may be integrated in the development

process for a continuous observation of internal quality during

the project development phase, it may also provide evidence

about quality evolution of a single component.
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