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ABSTRACT

Evolutionary Testing is a promising approach for automating
the testing of software-based systems. A number of papers
have been published in the last years which have successfully
applied evolutionary algorithms for test data generation.
However, none of these papers address functional testing - the
testing of the system's logical behavior on the basis of the
system specification - which is, in practice, the most important
and most common class of the methods. In this work we
present the application of evolutionary testing to the
functional testing of an automatic parking system which could
automate the parking procedure in future cars. A test
environment is described which automatically generates
interesting driving maneuvers, performs a simulation of the
system with the generated maneuvers and continuously
improves the test quality.
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1. INTRODUCTION
A considerable number of today's products is based on the
deployment of embedded systems. There are examples of their
use in nearly all industrial areas. The complexity of embedded
systems is steadily increasing since they are more and more
frequently developed to control very complex tasks, such as
vehicle dynamics or engine electronics applications.
Applications of embedded systems are often safety relevant.
Therefore, the occurrence of errors in embedded systems can
involve high risks and could endanger human life. In the case
of non-safety relevant systems, errors could still result in
enormous costs, e.g. in the automotive industry: Since updates
for error correction are usually performed by replacing the
entire embedded system the cars have to be called back to the
service stations. For products produced in large quantities
high costs arise. Accordingly, the development of embedded
systems must comply with the highest quality standards.

In practice, the most important analytical quality assurance
method is dynamic testing, namely the execution of the
system under test with a set of carefully selected test data. The
most significant weakness of the test is that the postulated
functioning of the system under test can only be verified for
those input situations selected as test data. Testing can show
the existence but not the non-existence of errors [1]. A proof
of correctness can only be produced by a complete test with
all possible input values, input value sequences, and input
value combination under all practically possible constraints.
Usually a complete test is not feasible because of the huge

amount of possible input situations and environmental conditions.
Accordingly, an essential part of testing is the selection of the
most error-sensitive test data during test case design.

Test case design can be automated for a set of test goals with the
help of evolutionary algorithms. The precondition for such an
evolutionary test is that the test goal can be expressed numerically
and transformed into an optimization problem. Up to now no
works have been published, in which functional tests have been
automated with the help of evolutionary tests. This is, on the one
hand, remarkable, since functional tests represent the most
important test procedure - they are used to check the correct
functioning of a system without analyzing the internal system
structures (black box test) - on the other hand, it is also
understandable, since it is very difficult to record the functional
behavior of most systems and the effort required to transform the
functional test into an optimization problem could be significantly
greater than the test effort saved by automating the test.

In this paper, functional tests will be automated using
evolutionary computation. This will be supported by the
application field selected, which is becoming increasing important
in vehicle development: control systems which introduce novel
comfort and safety functions on the basis of measuring the
distance of the vehicle to other objects. Examples of such
applications are: Distronic (an adaptive cruise control), with
which the vehicle keeps at a constant distance from a vehicle
ahead; automatic vehicle parking, which shall be examined in
more detail in this paper; or emergency brake systems, which are
intended to prevent a vehicle form running into the tail end of a
traffic jam. These are all very complex systems with a multitude
of components, whose function is, however, narrowly focussed,
making preconditions favorable for transforming the test of the
systems and their components into an optimization problem.

In order to test the automatic parking system, we implemented an
evolutionary functional test and integrated it into the simulation
environment for the system. It was already possible to
demonstrate the effectiveness of the evolutionary functional test
by means of a set of initial experiments. Several input situations
which lead to an error in the functional behavior of the system
were found fully automatically.

This paper is arranged as follows: After a short introduction to
evolutionary tests in the second chapter, the third chapter provides
an overview of work already published on the evolutionary test.
In the fourth chapter, the automatic parking system will be
introduced. In chapter five, the idea of the evolutionary functional
test for the automatic parking system is developed. Various
possibilities for forming the fitness function are explained. The



technical details of the implemented test environment are
explained in chapter six. In the seventh chapter first
experiments and results obtained are described. The paper
concludes with a short summary and an outlook for future
work.

2. EVOLUTIONARY TESTING
Testing is aimed at finding errors in the system under test and
giving confidence in its correct behavior by executing the
system with selected input situations. A systematic test is
divided into the core activities of test case design, test
execution, monitoring and test evaluation as well as the
activities of test planning, test organization and test
documentation, which prepare for the test and accompany it
(compare Fig 1).
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Fig 1: Evolutionary Test Case Design Embedded in the
Testing Process

Of all the test activities, test case design is assigned decisive
importance. Test case design determines the type and scope
and thus the quality of the test. If test cases relevant to the
practical application of the system are omitted or forgotten,
the probability of detecting errors which may exist within the
system sinks. Due to the central importance of test case design
for testing, a number of testing methods have been developed
over the last decades designed to help the tester with the
selection of appropriate test data. One important weakness of
the testing methods currently available is that they are not
easily automatable. Manual test case design, however, is time-
intensive and error-prone. The test quality is dependent on the
performance of the single tester. In order to increase the
effectiveness and efficiency of the test and thus to reduce the
overall development and maintenance costs for embedded
systems, we require a test that is systematic and extensively
automatable. Both objectives are addressed by the
evolutionary test.

Evolutionary testing is characterized by the use of meta-
heuristic search techniques for test case generation. The test
aim considered is transformed into an optimization problem.
The test object's input domain forms the search space in which
test data that fulfils the respective test aim is searched for. Due
to the non-linearity of software (if-statements, loops etc.) the
conversion of test problems into optimization tasks results in
complex, discontinuous, and non-linear search spaces.
Therefore, meta-heuristic search methods are employed, e.g.
evolutionary algorithms, simulated annealing or taboo search.

In order to transform a test aim into an optimization task a
numeric representation of the test aim is necessary, from
which a suitable fitness function for the evaluation of the
generated test data can be derived. Depending on which test

aim is pursued, different fitness functions emerge for test data
evaluation. If, for example, the temporal behavior of an
application is being tested, the fitness evaluation of the
individuals is based on the execution times measured for the test
data. For safety tests, the fitness values are derived from pre- and
post-conditions of modules, and for robustness tests of fault-
tolerance mechanisms, the number of controlled errors can form
the starting point for the fitness evaluation. Applications of
evolutionary testing to structural testing result in different fitness
functions again.

If an appropriate fitness function can be defined, then the
evolutionary test proceeds as follows. The initial population is
usually generated at random. If the test data has been obtained by
a previous systematic test, this could also be seeded into the initial
population [8]. The evolutionary test could thus benefit from the
tester's knowledge of the system under test. Each individual
within the population represents a test datum with which the
system under test is executed. For each test datum the execution is
monitored and the fitness value is determined for the
corresponding individual with respect to the defined test aim.
Next, population members are selected with regard to their fitness
and subjected to combination and mutation processes to generate
new offspring. Offspring individuals are then also evaluated by
executing the system under test with the corresponding test data.
A new population is formed by combining offspring and parent
individuals, according to the survival procedures laid down. From
here on, the process repeats itself, starting with selection, until the
test objective is fulfilled or another given stopping condition is
reached.

3. RELATED WORK
A number of papers have been published in the last years which
have successfully applied evolutionary algorithms for test data
generation. They have pursued various test goals and different test
methods.

Work on the automation of test data generation for structure tests
is most widespread. The aim of the work is to determine a
quantity of test data for various structure test criteria, such as the
statement test (the execution of all a program's statements), the
branch test (the execution of all program branches) or the
condition test (each of a program's conditions is at least evaluated
as true once and as false once), which achieve the highest possible
coverage of the respective internal program structures considered.
Structure tests are based on the assumption that a system can only
be tested thoroughly if all its parts are executed at least once
during the test. The main weakness of structure tests is that they
are unable to detect a lack of functions specified for the system
due to their one-sided orientation to the program code. For
structural testing, the fitness functions are typically based on the
computation of a distance for each individual indicating how far it
is away from executing the program in the desired way required
to reach a high program code coverage [4], [6], [7], [9], [10].

Further work deploys evolutionary algorithms for testing non-
functional properties such as safety constraints [4] or timing
constraints [2], [11], [12], [13]. Here, the aim is to check non-
functional properties of the system under test using evolutionary
algorithms, by searching for test data for which the system
violates the specified safety or timing constraints. The fitness
functions are based on the calculation of a distance to the
violation of the safety conditions or, for the temporal behavior



test, on the measurement of the execution times for the test
data generated.

Further work describes the deployment of evolutionary
algorithms for robustness testing [5] and mutation testing
[4],[14]. The application of evolutionary tests to functional
testing is not widespread. Singular work by researchers such
as [15] applies evolutionary algorithms to generate test data
for formally specified test cases.

In the following, we present an application area for
evolutionary functional testing, for which a complete
automation of the functional test can be achieved without
using formal specification techniques.

4. AUTOMATIC PARKING SYSTEM
As leading automobile supplier, DaimlerChrysler is constantly
developing new systems in order to improve vehicle safety,
quality, and comfort. Within this context, prototypical vehicle
systems are developed, which support automatic vehicle
parking - a function that might be introduced to the market in
some years time.

Fig. 2: Functionality of the Automatic Parking System

The automatic parking systems examined in this paper is
intended to automate parking lengthways into a parking space
(Fig. 2). To this end, the vehicle is equipped with environment
sensors, which register objects surrounding the vehicle. On
passing, the system can recognize sufficiently large parking
spaces and signals to the driver that a parking space has been
found. If the driver decides to park in the parking space the
vehicle does this automatically.
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Fig. 3: System Environment for the Automatic Parking
System

The system environment for the automatic parking system is
illustrated in Fig. 3. System inputs are sensor signals, which
receive information on the state of the vehicle, e.g. vehicle
speed or steering position, and information from the
environmental sensors, which register objects on the left and
right hand side of the vehicle. For output the system possesses
an interface to the vehicle actors, where the vehicle's velocity
and steering angle can be preset. The internal structure of the
automatic parking controller (Fig. 4). The parking space
detection processes the data from the environmental sensor
systems and delivers the recognized geometry of a parking
space if it has been recognized as being sufficiently large. The
parking controller component uses the geometry data on the

parking space together with the data from the vehicle sensors to
steer the vehicle through the parking procedure. For this purpose,
velocity and steering angle are preset for the vehicle actors.
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Fig. 4: Sub-Components of the Automatic Parking System

5. EVOLUTIONARY FUNCTIONAL TEST OF THE
AUTOMATIC PARKING SYSTEM

The automated parking system is a complex application. One
reason for its complexity is the parking space detection, which has
to clearly distinguish between drivable area and collision area.
Another source of complexity is the navigation of the vehicle
itself into the parking space. This has to be managed by
controlling speed and steering angle and without touching the
collision area. Entering the collision area means with a high
probability to cause damage at adjacent parking vehicles or
objects. So, a fundamental requirement of the automated parking
application is, that the vehicle must not damage or collide with
other objects or vehicles during the parking procedure. A system
fault might cause considerable material and commercial damage.
For that reason exhaustive and efficient testing is essential before
the release of such a system, which means to perform as much as
possible test cases in a systematic way.

Manual testing of the complete system is costly and time
consuming, because every test case comprises building up a park
scenario with real cars and manual driving of each maneuver.
Furthermore, performing a test in this way is difficult to
reproduce, because the details of the test execution vary. In
contrast, automated tests can perform a great number of test cases
with less effort. Therefore automated functional tests performed
in a controlled simulation environment in addition to manual tests
could form an important quality assurance measure.

Evolutionary functional testing provides a way to automate
functional tests as a complete process. Instead of selecting the test
cases manually, a search for interesting test cases is performed
automatically. This is done by translating the test case selection
into an optimization problem. This requires the solution of two
problems. First, how to generate the test data and second how to
evaluate the test results.

For the test data generation the possible input situations of the
system under test are mapped to the search space. On one hand
the mapping should keep the size of the search space as small as
possible, on the other hand the mapping should be able to produce
all possible input data for the system. If one considers the whole
input range during design of the test data generator does not mean
that all test cases in this range are actually tested, but it provides
the possibility for the search to come into this range. An
appropriate model has to be designed for this purpose.

The evaluation of the test cases is carried out by the fitness
function. In the automatic parking system, the fitness function
calculates a numerical fitness value for the parking maneuver
driven by the automatic parking system for the parking scenario
generated. This fitness value represents the quality of the
corresponding test case and intends to lead the evolutionary
search into a direction of faulty input situations. The aim of the



test is to find system faults and for that reason the fitness
function is designed to assign good fitness values to parking
scenarios which lead the system to enter the collision area or
end up in an inadequate parking situation. Bad fitness values
are assigned to scenarios which reach a good parking position
with enough clearance to the collision area. Different
strategies for the implementation of a fitness function are
possible, e.g. measuring the minimum distance between the
vehicles' surface and the borders of the collision area during
the parking maneuver. Entering the collision area would lead
to a negative distance. Alternatively, the time to contact can
be calculated - taking into account not only the distance to a
collision but also the speed of the vehicle. The shortest time to
contact measured for the parking maneuver could form the
fitness value of the parking scenario generated.

6. TEST ENVIRONMENT
The test environment of the automatic parking system
comprises the simulation environment, an evolutionary
computation toolbox, the calculation of the fitness values and
the test data generator which translates individuals into
concrete parking scenarios (Fig. 5). The test object is the
control unit of the vehicle with the implementation of the
automated parking system inside.
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Fig. 5: Design of the Test Environment

The simulation environment (built up on a Matlab R12.1
platform) simulates the properties of the vehicle and the
surrounding environment. It runs with the control unit “in-the-
loop” meaning that the simulation environment calculates the
sensor data of the vehicle and presents it to the control unit.
The control unit processes this sensor data and reacts on it
with control data for the simulation environment. This loop
simulates a complete parking scenario. The parameters
necessary for a simulation of a parking scenario, such as
positions of close-by cars forming the paring space or the
driving maneuver when passing the parking space are outputs
of the test data generator. After the simulation of a parking
maneuver the fitness value is calculated for the parking
scenario, by simulation the calculated parking maneuver. The
fitness value determined is assigned to the generated
individual.

In this way for every individual of the generation a simulation
of its corresponding parking maneuver is performed
determining the fitness value of the individual. When all
individuals of a generation have a fitness-value assigned, the
evolutionary algorithm makes another iteration and calculates
the next generation of individuals.

7. EXPERIMENT
In an initial experiment the parking control unit of the automatic
parking system was tested (Fig. 6). The parking control unit
calculates the necessary speed and steering angle for the parking
maneuver from the presented vehicle data and the geometry data
of the parking space. The test bypasses the parking space
detection unit and calls the parking control unit with the generated
parking space geometry directly.

control
data

sensor
data

Parking
Controller

Vehicle and Environmental Model

Control Device

Simulation Environment

parking scenario

steering angle

vehicle data
speed

parking space geometry

Fig. 6: Test Object Parking Controller

Generation of Test-Data
The geometry data are generated by the evolutionary algorithms
and the test data generator, as shown in Fig. 7. When the
geometry data is provided, the simulation of the parking
maneuver begins. The vehicle data presented to and the speed and
steering angle calculated by the parking control unit are inside the
simulation loop. The generation of the geometry data is done in
the experiment with a simplified parking space model. The
borders of the parking space are always rectangular. The shape of
the parking space can only vary in length and depth.
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Fig 7: Test Data Generation for the Test of the Parking Control
Unit

This simplified parking space model needs the values of five
independent variables to calculate a parking space geometry. With
the values of space_length and space_width the length and width
of the parking space are defined. The value of dist2space defines
the distance between vehicle and parking space at the beginning
of the parking maneuver. The value gap defines the distance
between the vehicle and the collision area. The angle ψ defines
the yaw angle of the vehicle to the parking space at the starting
position.

Fitness-Function
For fitness evaluation a simulation for the generated parking
scenario is performed. The result of the simulation is a complete
parking maneuver calculated by the automatic parking controller
for the parking scenario represented by the individual. The
parking maneuver is provided to the fitness function for its
evaluation. The implementation of the fitness function in the
experiment calculates the minimal distance between the collision
area and the vehicle in a parking maneuver (Fig. 8). The distance
is calculated for every single simulation step. The minimal value



during all simulation steps represents the fitness value of the
whole scenario.

collision area

collision area
parking space

Fig 8: Fitness-Calculation of a Parking Scenario with the
Distance Criteria

Parameters and Boundaries of the Evolutionary Test
The tbxmpga function of the GEA toolbox for Matlab [16]
was used as implementation for the evolutionary algorithm in
the experiment. This function implements a multi population
genetic algorithm. The search was done with a local selection
model, the fraction of the population to be reproduced every
generation was set to less offspring than individuals in
population, identical to elitest selection. A breeder genetic
algorithm was used for mutation, discrete recombination was
applied.

The experiment was performed in 20 generations with 44
individuals per generation divided to two sub-populations.
This means a total of 880 parking scenarios were simulated.
The test data generation model used, maps 6 independent
variables to the input domain of the system. Each of the 6
variables was limited to a defined range for the experiment.
The range for each variable was chosen by considering what is
reasonable in the context of the application. The definition of
a range for each variable limits the search space and prevents
the search from ending with solutions which have a good
fitness value but are not sensible for the application. The
range of the length of the parking space was defined to be
between 7 and 10 meter, the width was restricted to the range
between 2.5 and 3.5 meter. The distance between vehicle and
parking space was chosen to be between 10 cm and 3 m. The
distance to the collision area on the right vehicle side was in
the range of 10 cm and 1 m. The yaw angle was within –4°
and +4°.

Results
During the simulations of the evolutionary search, various
kinds of parking scenarios appeared. All these different
parking scenarios were associated to one of three generalized
categories. The correct parking scenarios are in the first
category; they comply with the specified behavior. Either the
vehicle arrives at a correct stop position (without touching the
collision area) or the parking controller rejects the situation
and refuses to park in. Another category are the critical
parking maneuvers, their path nearly touches the collision area
or the parking controller rejects the situation or discontinues
the maneuver without obvious reason. The third category
comprises scenarios, in which the vehicle enters the collision
area. Either the vehicle reaches the collision area with its edge
or the end-position is parallel in the collision area. Fig. 9
shows examples of each category.

During the evolutionary functional test more than 25 parking
scenarios were detected for which the calculated parking

maneuver resulted in entering the collision area. The scenarios
revealed two important insights. First, the parking strategy of the
parking control unit seems to have problems in situations when
the vehicles starting position is near to the collision area on the
right side and the distance from the parking space is large. An
example of such a situation is shown in Fig. 10. Second, the
parking maneuvers which entered the collision area also lead to
detection of a fault in the simulation environment. The
investigation revealed that the simulation environments
calculations of the car positions were too imprecise for the
parking application. This was not remarkable during
development, but caused some of the parking scenarios which
entered the collision area. The experiment has shown,
independent from the source of the error, that the evolutionary
functional testing method found test cases fully automatically,
which lead the system to erroneous behavior.
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Fig 9: Different Parking Maneuvers Resulting from Different Test
Data Sets Generated



Fig 10: Inadequate Parking Situation

8. CONCLUSION AND FUTURE WORK
The results of the deployment of evolutionary functional tests
are promising. Initial experiments were already able to find
several parking scenarios automatically, for which an error in
the system could be identified, allowing further improvement
of the parking strategy. The aim of this work is to provide a
comprehensive test environment for the entire system and its
subsystems for the time when the automatic parking system
goes into production-vehicle development, so that the series
product can be tested fully automatically, thoroughly and in a
target-oriented way with a multitude of very different
generated test scenarios.

Furthermore, we intend to expand the application of
evolutionary functional tests to further vehicle systems such as
intelligent speed control or emergency brake systems. We also
intend to research the interaction between evolutionary
functional tests and structure tests more intensively. This
should answer questions such as: Which coverage is achieved
with functional tests? Does the seeding of functionally
determined test data prove useful for an evolutionary structure
test and, on the other hand, does the seeding of structure-
oriented test data increase the test quality of the evolutionary
functional test?
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