
� Daimler-Benz AG, 1994 36/1TESSY – Yet Another Computer-Aided Software Testing Tool ?

TESSY
–

Yet Another Computer-Aided Software T esting T ool?

Joachim Wegener
Roman Pitschinetz

Klaus Grimm
Matthias Grochtmann

Daimler-Benz AG
Forschung und Technik

Alt-Moabit 91 b
D-10559 Berlin, Germany

Tel: +49 (0)30 39982-232 / -229 / -231 / -226
Fax: +49 (0)30 39982-107

email: wegener@dbresearch-berlin.de

Abstract

Until now, a lot of computer-aided software testing tools have been developed. Most
of them aim at the special support of several distinct test activities like test execu-
tion, monitoring, and test evaluation. Tools which cover a wider range of activities
and test phases have the decisive shortcoming that there is no methodological sup-
port for the systematic design of test cases, particularly for the functional test. In
summary, there is no sufficient overall support for all test activities.

In order to overcome these shortcomings, the testing tool TESSY was developed.
The most important strength of TESSY is that it provides support for the whole test-
ing life cycle, with the main emphasis on test case determination, test data genera-
tion, test execution, and test evaluation. Furthermore, there is powerful support for
test organization and test documentation. Substantial components of TESSY are, for
example, special window-based editors for the provision of essential environment
information, for the graphical visualization of the test object’s interface as well as for
the interactive input of test data and expected results. During test execution, several
basic activities, such as test driver generation, coverage analysis, and regression test-
ing, are performed automatically. For the test evaluation, different criteria can be de-
fined for the comparison of actual and expected results.

However, the essential highlight of TESSY is given by the computer-aided test case
design by means of the classification-tree editor CTE which was already presented at
the EuroSTAR ’93 conference. CTE supports the descriptive and systematic design
of black-box test cases following the classification-tree method and has become an
integral part of TESSY.

The first version of TESSY was finished in July 1994. Practical trials of the system
will start in the fourth quarter of this year. Based on the promising experience with
CTE, further improvement, particularly of the test efficiency, can be expected. Fu-
ture work will focus on extensions of TESSY with respect to integration testing and
automatic generation of test cases and test data.

� Daimler-Benz AG, 1994 36/2TESSY – Yet Another Computer-Aided Software Testing Tool ?

1. Introduction

Dynamic testing is of major practical importance for the quality assurance of soft-
ware systems. Up to 50 % of the overall development cost is incurred in software
testing (MYERS and DAVIS). Investigations of various software development pro-
jects in several divisions of the Daimler-Benz Group showed that the costs for soft-
ware testing mostly arose for unit testing, integration testing, and system testing. On
average, 34 % of total testing expenses is spent on unit testing, 28 % on integration
testing and approximately 27 % on system testing. The remaining 11 % is spent for
specific tests like the examination of software-hardware interfaces.

A result of these statistics is that in practice up to 17 % of the overall development
cost is allotted to unit testing. This significant quota of the entire development cost
increases if integration testing is done bottom up and the integration is checked by
testing higher level units. In this case the overall cost for unit and integration testing
increases to an amount of 31 % of the entire development cost. This illustrates the
importance of unit testing. Significant savings can be achieved, and the product qual-
ity can be improved by tools automating unit and integration testing. Moreover, sys-
tem programmers will examine their units more carefully if they have powerful tools
for efficient testing.

This paper describes the computer-aided software testing tool TESSY which pro-
vides general support for all test activities needed for unit testing. As an essential
part of TESSY, the classification-tree editor CTE, presented at last year’s EuroSTAR
(GROC1), aids the tester in the systematic determination of test cases.

The following chapter contains a description of test activities required for unit test-
ing. Chapter three gives a short overview of computer-aided software testing tools
that are suited for unit testing. Afterwards the test system TESSY and its usage are
described by testing an example module of TESSY itself. After some concluding re-
marks the paper closes with a short outlook on future work.

2. Test Activities

A systematic test comprises the following main activities: test case determination,
test data selection, expected results prediction, test case execution, monitoring, and
test evaluation as well as the accompanying activities of test organization and test
documentation. This structure facilitates a systematic procedure and the definition of
intermittent results. Figure 1 shows the test activities mentioned above and the rela-
tionships between them.

The test organization includes all activities involved in the management of test ob-
jects and their appertaining data. Therefore, a test database is required containing,
for example, test cases, test data, expected results, the test object’s output values, and
technical settings. Furthermore, technical prerequisites for test case execution such
as the implementation of test drivers have to be organized. Another task is to ensure
the reproducibility of tests to support regression testing after program changes.

In the course of test case determination, the test cases, with which the test object
should be tested, are defined. A test case defines a certain input situation to be tested.

� Daimler-Benz AG, 1994 36/3TESSY – Yet Another Computer-Aided Software Testing Tool ?

Specification
Functional

Program

Test Case
Determination

Test Data
Selection

Expected Results
Prediction

Test Case
Execution Monitoring

Test
Evaluation

Te
st

 O
rg

an
iz

at
io

n
in

cl
. T

es
t D

at
ab

as
e

Te
st

 D
oc

um
en

ta
tio

n

.

.

Figure 1: Test activities

It comprises a set of input data from the test object’s input domain. The test case de-
termination is the most important activity for a thorough test, since it determines the
kind and scope of the examination and thus the quality of the test.

A test case abstracts from a concrete test datum and defines it, only in so far as it is
required for the intended test. During test data selection the tester has to choose a
concrete element from each test case, i. e. from each set of input values, with which
the test should be executed.

Determining the anticipated results and program behaviour for every selected test
datum constitutes expected results prediction. If it is not possible to specify unequiv-
ocal output values or the expected behaviour, acceptance criteria or reference data
have to be used for the predicition of expected results.

Subsequently, test case execution is performed. The test object is run with the se-
lected test data. The output values and the program behaviour are thus determined.
By implementing an appropriate test driver, extensive automation of test case execu-
tion is possible.

The behaviour of the test object can be observed and recorded during test case exe-
cution by means of monitoring. A common method is to instrument the program
code according to a white-box test criterion. The source code is extended for that
purpose by inserting statements at control-flow or data-flow relevant points of the
program, which count the number of executions of the according program parts.

In the course of test evaluation, actual and expected values as well as actual and ex-
pected program behaviour are compared, and thus the test results are determined.

� Daimler-Benz AG, 1994 36/4TESSY – Yet Another Computer-Aided Software Testing Tool ?

Finally, the test should be evaluated by comparing the test results achieved with the
test objectives aspired to.

The objective of the test documentation is a clear, understandable, and comprehen-
sive description of the test results and all other information produced during the test.
Deviations between expected and actual behaviour have to be documented, discov-
ered errors are to be summarized in error statistics, and the fulfillment of the test ob-
jectives should be assessed.

3. Tools for Unit Testing

About 30 tools for the automation of software tests were presented at the testing
tools exhibitions of the EuroSTAR ’93 and STAR ’94 conferences. The largest frac-
tion of tools were capture-and-replay tools, in particular supporting system testing of
interactive programs. Approximately ten tools seem to be applicable for an employ-
ment in the field of unit testing, as there are Cantata and LDRA Testbed. A detailed
study on these ten tools, examining their abilities to support the test activities men-
tioned above, reveals that none of the tools offers a general support for all test activi-
ties. Most of the unit testing tools concentrate on monitoring, test organization, and
test documentation. Two software testing tools exclusively offer support for test case
determination. Table 1 contains an anonymous survey.

Table 1: Unit testing tools presented at EuroSTAR ’93 and STAR ’94

Test Activities
Test

Organization
Test Case

Determination
Test Data
Selection

Expected Results
Prediction

Test Case
Execution Monitoring

Test
Evaluation

Test
Documentation

T
O
O
L
S

A

B

C

D

E

F

G

H

I

J

TESSY

Due to the lack of software testing tools offering an overall support for all test activi-
ties, Daimler-Benz Research in Berlin developed the test system TESSY which pro-

� Daimler-Benz AG, 1994 36/5TESSY – Yet Another Computer-Aided Software Testing Tool ?

vides general support for all test activities and aims at a considerable increase in unit
testing efficiency for programs written in C. The costs for software testing are to be
reduced, and the reliability of systematic and thoroughly tested software products is
to be increased by using TESSY.

4. Test System TESSY

The most important strength of TESSY is that it provides support for the whole test-
ing life cycle, offering a homogenous, object-oriented, and context-sensitive user in-
terface which guides the tester through all the test phases. Accordingly, the use of
TESSY is very simple and comfortable. TESSY contains separate tools for each test
activity which are described successively in the following sections.

TESSY facilitates a combination of black-box and white-box tests. The emphasis is
laid on black-box testing because only test cases derived from the functional specifi-
cation allow to examine appropriately, whether all specified requirements have been
transformed into the test object. Test cases are determined using the classification-
tree editor CTE (GROC1), which is based on the classification-tree method
(GROC2). During the functional test, the branch coverage can be investigated by
means of instrumentation. If the degree of coverage is not sufficient to reach the test
objectives, the test has to be improved subsequently by additional test cases.

Through the extensive test organization assistance provided by TESSY, comprising
an integrated database for all test relevant data, regression testing can be totally auto-
mated in most cases. After the tester has edited the required data for the first test ex-
ecution the data are available for further tests at any time. Normally, the test run sim-
ply has to be repeated.

The test system TESSY was developed on VAXstations with the operating system
VMS for testing ANSI-C and VAX-C programs. It is implemented in C. The user
interface is based on OSF’s Motif toolkit. A version for SUN/Solaris is planned.

4.1. Example

The application of TESSY shall be explained using a realistic example: The test ob-
ject is the C-function

is_line_covered_by_rectangle (struct line line, struct rectangle rectangle)

which checks whether a line is covered by a given rectangle with its sides parallel to
the axes of the coordinate system. Input parameters of the test object are two struc-
tures. The first one of type line describes the line by the positions of its two end
points, the second one of type rectangle describes the rectangle using the position of
its upper left corner, its width and its height. If the line is covered by the rectangle,
the test object should return the value yes, otherwise no. Figure 2 illustrates the task
of the test object is_line_covered_by_rectangle by means of an arbitrary rectangle
and several sample lines. The figure also defines regions to describe the possible
positions of the line end points with respect to the rectangle.

The function is_line_covered_by_rectangle is part of the classification-tree editor
CTE. It is used to determine the need of redrawing connecting lines between the ele-

� Daimler-Benz AG, 1994 36/6TESSY – Yet Another Computer-Aided Software Testing Tool ?

rect_p

p1

p2

above above and rightabove and left

left right

below and left below and rightbelow

width

height

Figure 2: Rectangle with sample lines

ments of the classification-tree in case of window exposure events. Similar functions
can be found in many other software systems dealing with graphical presentations.

4.2. Test Organization

In TESSY a test is organized into projects. Each project contains at least one logical
module. In preparation of the test, the user has to supply some information for each
module using the environment editor. Among other data he enters the program
sources for the logical module, the compiler to be used and, if necessary, compiler
options and linker instructions. In case all information is complete, TESSY investi-
gates the whole export interface of the module automatically by analyzing all pro-
gram sources stated. The export interface consists of all exported C-functions and
their interface, including global variables, parameters, function return codes and the
corresponding data types. The export functions ascertained represent the actual test
objects.

Before the tester can start with the central test activities for each function, he has to
complete the interface description of the export functions by entering certain charac-
teristics of each interface component for which an automatic identification was im-
possible. He must specify whether a component is only an input, an output, or input
and output of the respective test object. Value parameters are always of the kind IN,
the function return code always of the kind OUT. Global variables and dynamic val-
ues, like pointers, can be of the kind IN, INOUT, or OUT. This completion of the in-
terface description is carried out in TESSY’s interface editor, shown in Figure 3. It is
possible to browse through complex data types down to the level of basic C data
types. Figure 3 illustrates this for the second parameter struct rectangle of the exam-
ple.

The type of every parameter of the illustrated test object is_line_covered_by_rectan-
gle can be determined automatically. Both structures, line and rectangle, as well as

� Daimler-Benz AG, 1994 36/7TESSY – Yet Another Computer-Aided Software Testing Tool ?

Figure 3: Editor with interface description of is_line_covered_by_rectangle

their elements, are value parameters. Consequently, they are labelled IN. Naturally,
the function return code is of the type OUT. Global variables do not exist.

When the definition of all interface components has been completed, the tester is
able to begin with the main test activities.

4.3. Test Case Determination

The test case determination is carried out by means of the graphical classification-
tree editor CTE which supports the application of the classification-tree method. The
user edits the classification tree in a syntax-directed and object-oriented manner. In
the course of the classification-tree method, the input domain of the test object is re-
garded under various aspects assessed as relevant for the test. For each aspect dis-
joint and complete classifications are formed. Classes resulting from these classifica-
tions may be further classified. The stepwise partition of the input domain results in
the classification tree. Subsequently, test cases are determined by combining classes
of different classifications. This is done by using the tree for the generation of a
combination table in which the test cases are marked interactively. The CTE trans-
mits these test cases to the test system TESSY where they are saved in the test data-
base.

The classification-tree method was described by Grochtmann and Grimm (GROC2),
the classification-tree editor CTE was already presented at the EuroSTAR’93
(GROC1). Therefore, they will not be explained in more detail here.

� Daimler-Benz AG, 1994 36/8TESSY – Yet Another Computer-Aided Software Testing Tool ?

The test case determination for the example is_line_covered_by_rectangle leads to
49 test cases. Figure 4 shows the main window of the CTE displaying the appertain-
ing classification tree and one part of the combination table. Test case number two,
for instance, defines a test with the special case that the line end point P1 is the only
point of the line which is covered by the given rectangle. P1 is located on the left
side of the rectangle. The position of the line end point P2 is left from and above the
rectangle. A sample line is shown in Figure 2.

Figure 4: Test case determination for is_line_covered_by_rectangle using the CTE

4.4. Test Data Selection and Expected Results Prediction

Subsequent to the test case determination, the user calls the test-data editor (TDE) to
enter concrete test data and to predict expected results for each defined test case.
Based on the test case definition in the combination table of the CTE, a text version
of the test case actually to be worked on is generated and displayed in the upper part
of the editor. Additional test case comments are shown as well. Below these text
areas the whole test object interface is presented in two browsers, one for editing test
data, the other to enter expected results for the output parameters of the test object.
Each component can be browsed through down to the level of basic types where in-

� Daimler-Benz AG, 1994 36/9TESSY – Yet Another Computer-Aided Software Testing Tool ?

put areas for editing concrete test data and expected results are provided. In addition,
the tester has to select an evaluation mode for each output parameter, which deter-
mines the way the actual values produced by the test object shall be evaluated with
respect to the expected results. Appropriate evaluation modes are offered to the user
in pop-up menus depending on the particular data type handled. Evaluation criteria
are, for example, equality, inequality, and lower or upper bounds. To enter pointer
values the user can generate dynamic values. Thereby, it is possible to enter dynamic
data structures like lists and trees as input values or predicted results.

Figure 5: Test data selection and expected results prediction for
is_line_covered_by_rectangle

Figure 5 illustrates the test-data editor with its two browsers for the second test case
of is_line_covered_by_rectangle. The tester enters test data in the left browser and
expected results in the right one. The upper left corner of the rectangle is located at
position (100,100). The width of the rectangle amounts to 100 pixels, its height to 50
pixels. The position of the first end point of the line, P1, is (100,125). Consequently,
it is located on the left side of the rectangle as demanded in the test case specifica-
tion. The second end point of the line has a position which is left from and above the
rectangle. Its coordinates are (50,50). The only expected result to enter is a value for
the function return code. Since the function return code is of the type enumeration,
the expected results browser lists the possible values, and the user can select one

� Daimler-Benz AG, 1994 36/10TESSY – Yet Another Computer-Aided Software Testing Tool ?

value by simply clicking on the appertaining toggle button. For the actual test case,
is_line_covered_by_rectangle has to detect a coverage of line and rectangle. There-
fore, the expected output is yes. The evaluation mode is set to Equal.

4.5. Test Case Execution and Monitoring

If test data, expected results and evaluation modes for each test case were entered
completely, the test object can be executed with the test data. TESSY provides a spe-
cial tool for controlling the test case execution. The tester can select the test cases to
be executed from a table visualizing the whole set of test cases. Additional editors
are available to edit operating system-dependent settings, like the definition of log-
icals, or to prepare the test object’s environment on programming language level, for
instance, in order to open a file required by the test object. Both the operating sys-
tem-dependent settings and the preparations on programming language level often
are a prerequisite for a proper test execution. Based on the data in the test database
and the information given by the tester, TESSY generates a test driver which runs
the test object for every selected test case with its test data. This test driver also re-
ceives the actual values produced by the test object and saves them in the test system
database. The generated driver concurs with ANSI-C restrictions. For test case exe-
cution, the test driver is linked to the test object and, if necessary, to other required
files forming a so-called test rig. Optionally, the tester can export the test rig for test
case execution on a target system. Afterwards it can be reloaded into the test system
for test evaluation.

Monitoring of the test object can be done by measuring the branch coverage
achieved. For this purpose, TESSY provides automatic instrumentation of the test
object’s source code. It is possible to instrument either only the export functions or
the entire module.

4.6. Test Evaluation and T est Documentation

The last tool within TESSY is used for the test evaluation and the generation of a
user determinable test documentation (Figure 6). The expected results and actual val-
ues are compared according to the evaluation modes specified. This yields the test
results. If the test object was instrumented, the branch coverage can be computed and
the program branches not executed can be shown.

The tester can specify the scope of the test documentation to be generated through a
number of options. The documentation can vary from general error statistics for the
complete test to very detailed tables for each test case executed. Generated docu-
ments can be saved in ASCII-files in order to import them into desktop publishing
tools.

An exemplary test documentation for is_line_covered_by_rectangle is illustrated in
Figure 6. The tester selected the first eight test cases for test case execution, and he
activated monitoring. The execution of the first eight test cases did not discover any
error in the test object, but only 40 % of the existing branches were executed. A de-
tailed documentation is displayed for the second test case.

� Daimler-Benz AG, 1994 36/11TESSY – Yet Another Computer-Aided Software Testing Tool ?

Figure 6: Test evaluation and test documentation for is_line_covered_by_rectangle

5. Conclusion, Practical Experience, and Future Work

The test system TESSY provides interactive tools for test organization, test case de-
termination, test data selection, and expected results prediction. They are specialized
on the respective activities and conducive to a systematic test. The classification-tree
editor CTE is of special importance, because it supports a thorough and well struc-
tured test case determination corresponding to the classification-tree method. Test

� Daimler-Benz AG, 1994 36/12TESSY – Yet Another Computer-Aided Software Testing Tool ?

case execution, monitoring, test evaluation, and test documentation are executed au-
tomatically by TESSY (see Table 2).

Table 2: Degree of automation by TESSY

Degree of automation

manual tool supported
(interactive)

full

Test Case Determination

Test Data Selection

Expected Results Prediction

Test Case Execution

Monitoring

Test Evaluation and X

X

X

X

X

X

(X)

(X)

(X)planned

planned

planned

Test Activities

Documentation

Practical trials of the entire test system will start in the fourth quarter of this year in
several projects of Daimler-Benz divisions, hence results from practical applications
will be available soon. The classification-tree editor has been used successfully in
various projects for a systematic test case determination for two years now. In com-
parison with previous tests significant savings could be achieved: the number of test
cases could be reduced and their quality was improved considerably. Thus the cost
for the entire tests was diminished substantially. On average, savings up to 50 %
could be achieved for the test case determination. Even more savings are expected
for the remaining test activities due to the high degree of automation within TESSY.
This refers especially to those activities which are totally automated by TESSY.

In the future, extensions for TESSY are planned to enable fully automated unit test-
ing. Owing to the strengths and growing relevance of formal methods in software
engineering the use of formal specification techniques is planned. This will enable
computer-aided generation of classification trees and test cases as well as automatic
generation of test data from formal test case specifications. The predicition of ex-
pected results will be supported by executable specifications.

Other fields of future work will be further support for integration and system testing
as well as a test system version for Ada programs.

References

DAVIS Davis, C. G., Testing Large, Real-Time Software Systems, Software
Testing, Infotech State of the Art Report, Volume 2, 1979, pp. 85 -
105.

� Daimler-Benz AG, 1994 36/13TESSY – Yet Another Computer-Aided Software Testing Tool ?

GROC1 Grochtmann, M., Grimm, K., Wegener, J., Tool-Supported Test Case
Design for Black-Box Testing by Means of the Classification-Tree Edi-
tor, EuroSTAR ’93 – 1st European International Conference on Soft-
ware Testing Analysis and Review, 25 - 28 October 1993, London,
UK.

GROC2 Grochtmann, M., Grimm, K., Classification Trees for Partition Test-
ing, Software Testing, Verification & Reliability, Volume 3, Number
2, June 1993, Wiley, pp. 63 - 82.

MYERS Myers, G. J., The Art of Software Testing, John Wiley & Sons, Inc.,
1979.

