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Abstract
The development of embedded systems is an essential industrial activity. More than 90% of all
electronic components manufactured are used in embedded systems, e.g. in aerospace
technology; railway and motor vehicle technology; process and automation technology;
communication technology; process and power engineering, as well as in defense electronics.
Embedded systems are also used regularly in safety relevant applications. Therefore, the
occurrence of errors may endanger human lives or cause costly recalls, for example in the
automotive industry. Accordingly, the development of embedded systems must comply with the
highest quality requirements and standards.
Analytical quality assurance is of central importance to achieving high quality development of
embedded systems. In practice, the most important analytical quality assurance measure is
dynamic testing. The thorough testing of developed systems is therefore essential for product
quality. The aim of testing is to detect errors in the system under test and to convey confidence in
the correct functioning of the system if no errors are found during comprehensive testing. 
The effectiveness and efficiency of the test process can be clearly improved by evolutionary
testing. This has been successfully proved in several case studies and industrial applications.
Evolutionary Tests thus contribute to quality improvement as well as to the reduction of
development costs.
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1 Introduction 

The testing of embedded systems is considerably more complex than the testing of conventional
software systems. This is due to the technical features of embedded systems, and to special
requirements made on these kinds of systems, e.g. embedded systems usually have to fulfil
functional as well as non-functional requirements such as temporal requirements, the
computational accuracy of the target system, memory space requirements during program
execution, or the synchronization of parallel processes. 
Tests are the only procedure that allow dynamical system behavior to be tested in a real
application environment, and therefore are the most important quality assurance measure for
embedded systems. Interaction with the real application environment is equally important to
system reliability. This includes, for example, the employed target hardware, the employed
operating system, and the employed compiler. Therefore, testing typically takes up more than 50%
of the overall development effort and budget for embedded systems [2]. 
The most significant weakness of testing is that the postulated functioning of the tested system
can, in principle, only be verified for those input situations which were selected as test data.
According to Dijkstra [4], testing can only show the existence but not the non-existence of errors.
Proof of correctness can only be produced by a complete test, i.e. a test with all possible input
values, input value sequences, and input value combinations under all practically possible
constraints. In practice, complete testing is usually impossible because of the vast amount of
possible input situations. Testing can therefore only be a sampling method. Accordingly, the
selection of an appropriate sample containing the most error-sensitive test data is essential to
testing. If test data relevant to the practical deployment of the system are omitted, the probability
of detecting errors within the software declines. Of all the testing activities – test case design, test
execution, monitoring, test evaluation, test planning, test organization, and test documentation –
essential importance is thus attributed to test case design [24].
Systematic test case design is indispensable to good test quality because it defines the type and
scope of the test. For most test objectives, test case design is difficult to automate:

• the generation of test cases for functional testing is usually impossible because no formal
specifications are applied in industrial practice, 

• structural testing is difficult to automate due to the limits of symbolic execution,
• no specialized methods and tools exist for testing the temporal behavior of systems, and also
• a generation of test cases for testing safety constraints is generally impossible.

Therefore, test cases have to be defined manually which affects the efficiency and effectiveness of
the executed test.
In order to increase the effectiveness and efficiency of the test and thus reduce the overall
development costs for embedded systems, a test is required that is systematic and extensively
automatable. While functional test case design can be automated to a large extent using new tools
such as the CTE XL [11] and TPT [10], evolutionary testing [20] is a promising approach for the
complete automation of test case design for the remaining three aspects mentioned above. 
The Evolutionary Test can be applied to tests of the temporal behavior of systems (e.g. [20] and
[25]); it can be used to generate test cases for structural testing (e.g. [1] and [21]), and it enables
the automation of safety testing (e.g. [19]). The aim of this work is to increase the efficiency and
quality of the tests and to achieve substantial cost savings in system development by a high
degree of automation. 
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In order to carry out an evolutionary test, the test case design has to be transformed into an
optimization problem which in turn is solved with meta-heuristic search techniques, such as
evolutionary algorithms and simulated annealing. The input domain of the system under test
represents the search space in which test data fulfilling the test objectives under consideration
are searched for. The Evolutionary Test is generally applicable because it adapts itself to the
system under test.
The second chapter introduces the basic principles of evolutionary algorithms and their
application to testing; the Evolutionary Test. The third chapter discusses the use of temporal
behavior and structural evolutionary testing. The paper concludes with a summary of the most
important results.

2 Introduction to Evolutionary Algorithms

Evolutionary algorithms represent a class of adaptive search techniques and procedures based on
the processes of natural genetics and Darwin’s theory of biological evolution. They are
characterized by an iterative procedure and work parallel on a number of potential solutions for a
population of individuals. Permissible solution values for the variables of the optimization problem
are encoded in each individual.
The fundamental concept behind evolutionary algorithms is to evolve successive generations of
increasingly better combinations of those parameters that significantly affect the overall
performance of a design. Starting with a selection of good individuals, the evolutionary algorithm
tries to achieve the optimum solution by means of the random exchange of information between
increasingly fit samples (recombination), and the introduction of a probability of independent
random change (mutation). The adaptation of the evolutionary algorithm is achieved using
selection and reinsertion procedures based on fitness. Selection procedures control which
individuals are selected for reproduction, depending on the individuals’ fitness values. The
reinsertion strategy determines how many, and which, individuals are taken from the parent and
offspring population to form the next generation. 
The fitness value is a numerical value that expresses the performance of an individual with regard
to the current optimum, so that different individuals can be compared. The notion of fitness is
fundamental to the application of evolutionary algorithms; the degree of success in using them
may depend critically on the definition of a fitness that changes neither too rapidly nor too slowly
with the design parameters. The fitness function must guarantee that individuals can be
differentiated according to their suitability for solving the optimization problem. 
Fig. 1 provides an overview of a typical evolutionary algorithm procedure. First, a population of
guesses as to the solution of a problem is initialized, usually at random. Each individual within the
population is evaluated by calculating its fitness. This usually results in a spectrum of solutions
ranging in fitness from very poor to good. The remainder of the algorithm is iterated until the
optimum is achieved, or another stopping condition is fulfilled. Pairs of individuals are selected
from the population according to the pre-defined selection strategy, and combined in such a way
as to produce a new guess analogous to biological reproduction. 
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Figure 1: Evolutionary Algorithms

The algorithm combinations are many and varied. Mutation is also applied. The new individuals are
evaluated for their fitness, and survivors into the next generation are chosen from parents and
offspring, often according to fitness. It is important, however, to maintain diversity in the
population to prevent premature convergence to a sub-optimal solution.

2.1 Application to Software Testing

In order to automate software tests using evolutionary algorithms, the test aim must itself be
transformed into an optimization task. A numeric representation of the test aim is necessary, from
which a suitable fitness function for the evaluation of the generated test data can be derived.
Depending on which test aim is pursued, different fitness functions emerge for test data
evaluation. If an appropriate fitness function can be defined for the test aim, and evolutionary
computation is applied as the search technique, then the Evolutionary Test proceeds as follows.
The initial set of test data is generated, usually at random. In principle, if the test data has been
obtained by a previous systematic test, this could also be used as an initial population[22]. The
Evolutionary Test could thus benefit from the tester's knowledge of the system under test. 
Each individual within the population represents a test datum with which the system under test is
executed. For each test datum the execution is monitored and the fitness value determined for the
corresponding individual. 
Next, test data with high fitness values are selected with a higher probability than those with a
lower value and are subjected to combination and mutation processes to generate new offspring
test data. It is important to ensure that the test data generated are in the input domain of the test
object. The main idea behind evolutionary testing is the combination of interesting test data in
order to generate offspring test data that truly fulfil the test objectives. The offspring test data are
evaluated by executing the system under test. A new population of test data is formed by merging
offspring and parent individuals according to the survival procedures laid down. From here on, the
process repeats itself, starting with selection until the test objective is fulfilled or another given
stopping condition is reached (compare Fig. 2).
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Figure 2: Evolutionary Test

Due to the non-linearity of software (if-statements, loops, etc.), the conversion of test problems
into optimization tasks usually results in complex, discontinuous, and non-linear search spaces.
Neighborhood search methods such as hill climbing are not suitable in such cases. Therefore,
meta-heuristic search methods, such as evolutionary algorithms, are employed because their
robustness and suitability for the solution of different test tasks has already been proven in
previous work, e.g. [8], [17], and [18]. The suitability of evolutionary algorithms for testing is based
on their ability to produce effective solutions for complex and poorly understood search spaces
with many dimensions. The dimensions of the search spaces are directly related to the number of
input parameters of the system under test. The execution of different program paths, and the
nested structures in software systems, lead to multi-model search spaces when testing. Apart
from many local optima, these are also marked by jumps and levels of identical fitness values.
Input parameter dependencies within the system under test may result in definition gaps. A noisy
fitness function may also be caused by internal system states, in this case identical input values
may result in different fitness values.
During optimization, evolutionary algorithms identify the building blocks of an ideal solution, and
store those blocks in the individuals within the population. Building blocks are the partial solutions
(genetic modules) of which good solutions are composed. The combination of individuals and
different building blocks results in more qualified individuals as optimization continues. As well as
being particularly well-suited to the treatment of complex search spaces, evolutionary algorithms
also represent a very robust optimization procedure.
There are few prerequisites for the application of the Evolutionary Test. An interface specification
of the system under test is required to guarantee the generation of valid input values. For
structural testing, the source code of the test object is required. The most important prerequisite
is a numeric presentation of the test aim, from which a suitable fitness function for the evaluation
of generated test data can be derived. Different fitness functions emerge for test data evaluation
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depending on which test aim is pursued. In order to carry out temporal behavior testing, the
fitness evaluation of the test object is based on the execution time measured. Fitness values for
testing safety requirements are derived from pre- and post conditions of modules. The automation
of structural test case design uses the control-flow graph executed by a test datum to form the
starting point for the fitness evaluation.

3 Demonstrating the  Capabilities of Evolutionary Testing

In this chapter experiments are presented which demonstrate the efficiency and the effectiveness
of the evolutionary approach for different applications, e.g. evolutionary temporal and structural
testing. In addition, the evolutionary testing approach is compared to systematic test case design,
random testing and finally to  static analyses. Each experiment was performed ten times using
evolutionary testing and random testing in order to achieve statistical mean values.

3.1 Evolutionary Algorithm Settings

The configuration of the evolutionary operators was left unchanged throughout the test
experiments. Population size was fixed at 300 individuals. Rank-based fitness assignment was
used, i.e. the fitness assigned to each individual depends only on its rank position and not on the
concrete value of the overall fitness, as would be the case for proportional fitness assignment. A
reasonable selective pressure was applied to ensure that diversity of the population was retained
and to avoid a rapid convergence towards a local optimum. Stochastic universal sampling was
used as a selection method.
Discrete recombination was applied for the recombination of individuals. Integer mutation was
employed using different range parameters. An individual’s probability of mutating variables is set
to be inversely proportional to its number of variables. For each variable, the mutation probability
is 1/number_of_variables, i.e. one mutation within one individual. A reinsertion strategy with a
generation gap of 90% was applied in our experiments, i.e. 90% offspring and10% parents form the
next generation. The best parents from the previous generation survive.
An extended population model using several subpopulations was applied to our evolutionary
algorithms. The subpopulations utilize different evolutionary algorithms in order to apply a
different search strategy, e.g. local searches or global searches. In order to combine local and
global search strategies, the best individuals migrate between the subpopulations at regular
intervals. The subpopulations also compete with each other. Strong subpopulations receive more
individuals whilst other subpopulations diminish in size. This results in an automatic distribution of
resources. The evolutionary test was concluded as soon as complete branch coverage had been
achieved or if a maximum number of generations was produced. For each partial aim the
maximum number of test data to be created was limited to 200 generations.

3.2 Testing Temporal Behavior of Real-Time-Systems

Most embedded systems are subject to temporal requirements. This is due to reasons of
operational comfort, e.g. short system reaction times to user commands, or due to the
requirements of technical processes that are controlled by the system. Therefore, embedded
systems have to be thoroughly tested not only with regard to their functional behavior, but also to
detect existing deficiencies in temporal behavior. Existing test methods are unsuitable for the
examination of temporal correctness. 
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Even for an experienced tester, it is virtually impossible to find such inputs by analyzing and
testing the temporal behavior of complex systems manually. Effects of modern processor
architectures with pipelining, data caching and instruction caching as well as the use of system
calls, parallelism, and optimizing compilers on the timing behavior of a system can hardly be
assessed by the tester. 
When testing the temporal behavior of systems, the objective is to check whether input situations
exist for which the system violates its specified timing constraints. Usually a violation occurs
because outputs are produced too early or their computation takes too long. The task of the tester
and therefore of the Evolutionary Test is to find input situations with especially long or short
execution times in order to check whether a temporal error can be produced. 
When using evolutionary testing for determining the shortest and longest execution times of test
objects, the execution time is measured for every test datum. The fitness evaluation of the
individuals generated is based on the execution times measured for the corresponding test data. If
one searches for long execution times, individuals with long execution times obtain high fitness
values. Conversely, when searching for short execution times, individuals with short execution
times obtain high fitness values. Individuals with long or short execution times are selected
depending on the objective of the test and combined in order to obtain test data with even longer
or shorter execution times. The test is terminated if an error in temporal behavior is detected or a
specified termination criterion is reached. If a violation of the system’s predetermined temporal
limits is detected, the test was successful and the system has to be corrected. Evolutionary
testing enables a fully automated search for extreme execution times to be carried out. 
Besides the evolutionary test a static analysis was also carried out for the test objects. In order to
carry out the static analysis, the target processor and the memory available must be replicated in
a simulation. The minimum requirement for the static analysis is that the upper and lower limits
for loops must be specified. 
The static analysis run time prediction represents a safe and guaranteed yet pessimistic (and not
the closest predictable) upper limit for the run time of the test object, since the estimate is only
based on the control flow graph (CFG). Here guaranteed means that, for example, no longer
execution times exist when focusing on the worst case execution time (WCET). However, the path
belonging to this predicted execution time is generally infeasible. In order to carry out more exact
analyses and thus achieve a closer prediction of the WCET and best case execution time (BCET), a
data flow analysis must also be performed in order to exclude those infeasible paths which would
lead to a pessimistic prediction. 
For this reason, the program execution is simulated manually, beginning with the start of the
source text. If one reaches a point in the CFG of the program, which is not executable due to a
logical correlation with a place higher up in the program, since there is no input set which makes
this path possible, this correlation is added in the form of a functional constraint.
This step is an iterative process which must be repeated until the CFG has been completely
simulated and no contradiction has been found. One can then be sure that the worst case path
found is feasible and the WCET of the path represents the closest upper limit (SA_feas) amongst the
given constraints. This is very costly, as it is generally performed manually.

3.2.1 Experimental results
Previous work has already shown that evolutionary testing has always achieved better results than
random testing (e.g. [23] and [26]). Comparison with static analyses has also confirmed that the
extreme execution times determined by the Evolutionary Test represent realistic estimations of
the longest and shortest execution times, see Figure 3 and [13]. Figure 3 displays a comparison of
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WCET and BCET of four different test objects (T1 to T4 from the field of motive power engineering.
The execution times, found using static analysis (SA), evolutionary testing (ET) and random testing
(RT) respectively, are presented. A 167 CPU with a 20 MHz clock speed served as the target
processor. The execution times, using dynamic methods, were determined using hardware timers
from the target environment with a resolution of 200ns. The same amount of test cases were
generated for the random test as for the evolutionary test. The evolutionary and random test are
implemented in the test system TESSY, [24] and [27], developed by DaimlerChrysler Research.
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Figure 3: Comparison of static, evolutionary and random execution times found

Figure 3 displays the results of four tasks investigated for WECT on the left hand side and BECT on
the right hand side. The numbers displayed are the execution times in processor. The diagrams
themselves are normalized and the static analyses’ results SA_long and correspondingly SA_short are set
to 100%, since these are extreme execution times which are guaranteed and cannot be exceeded. 
The static analysis calculates an absolute longest SA_long and a shortest prediction SA_short of the
execution time for a task, which normally constitute an infeasible path, not dynamically
executable, and therefore not accurate. In order to achieve an accurate static analysis, these
infeasible paths have to be excluded which normally involves an enormous amount of manual
effort. In contrast, SA_feas is the longest or shortest feasible (dynamic) execution time, reached by
excluding iteratively manually infeasible paths until a feasible path has been identified. The WCET
results show that the feasible longest execution time possible deviates from the purely static
longest prediction (SA_long) by between 12% and 20%. The results are similar for the BCET. Here the
shortest feasible time is longer than that of the pure static analysis (SA_short) by between 20% to
25%. As one can see, the ET produced nearly the same results as the static analyses (SA_feas) when
the infeasible paths are excluded. These small differences can have a blurring effect because of
the timer’s resolution. The only difference is that ET is completely automatable and that dynamic
and environmental aspects are taken into account. Accurate results can be achieved within
minutes. An accurate static analysis prediction is very time consuming, because, for every new
software task, its extremely time consuming infeasible paths have to be excluded; this is normally
done manually. The RT result gives an impression of the effectiveness using ET. 
The Evolutionary Test has also attained convincing results as compared to the systematic
developer tests, as Figure 4 illustrates. The six tasks (M1 to M6) are derived from an engine
control system for six- and eight-cylinder blocks which contain several tasks that have to fulfill
timing constraints. Each task is a test object and has been tested for its worst-case execution
time by the developers using systematic testing. The test cases for testing the temporal behavior,
defined by the developers, are based on the functional specification of the system as well as on
the internal structures of the tasks. The developer tests achieved full branch coverage for each
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task. Evolutionary testing was used to verify these results. The tests were performed on the target
processor later used in the vehicles. 
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Figure 4: Results for the engine control system tasks 

Figure 4 shows the longest execution times determined by the developers with systematic testing
(DT) in comparison with the results achieved by evolutionary testing (ET) and random testing (RT).
The results of the tests carried out by the developer are set to be 100 %. The execution times are
measured in processor cycles. The size of the tasks varied from 39 lines of code to 119; the
number of input parameters from 9 to 32.
A comparison of the results shows that evolutionary testing found the longest execution times for
all the given tasks among these three testing methods. The tests carried out by the developer did
not attain the longest execution time. In three cases, the developer’s test results are even worse
than those of the random test. For the other three tasks the results are better than those of the
random test. The latter only finds the longest execution time for task M6. The longest execution
time found by the random test in task M4 lies more than 35 % below the value determined by the
Evolutionary Test, and 30 % below that of the developer’s tests.
The excellent performance of the Evolutionary Test in comparison to the developer tests also
shows the effectiveness of the Evolutionary Test in comparison to function-oriented and structure-
oriented testing methods. The results are particularly astonishing because evolutionary testing
treats the software as black boxes whereas the developers are familiar with the function and
structure of their system. This could be explained by the use of system calls, the effects of which
on the temporal behavior are difficult to rate for developers.

3.3 Evolutionary Structural Testing 

Structural testing is widespread in industrial practice and stipulated in many software-
development standards. Statement, branch, and condition testing are common examples. The aim
of applying evolutionary testing to structural testing is the generation of a quantity of test data,
leading to the highest possible coverage of selected structural test criterion.
In order to apply evolutionary testing to the automation of structural testing, the test is split up
into partial aims. The identification of the partial aims is based on the control-flow graph of the
program under test. Each partial aim represents a program structure that needs to be executed to
achieve full coverage, e.g. a statement, a branch, or a condition with its logical values. For each
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partial aim an individual fitness function is formulated and a separate optimization is performed to
search for a test datum executing the partial aim. The set of test data found for the partial aims
then serves as the test data set for the coverage of the structure test criterion. In order to direct
the search toward program structures not covered, the fitness function computes a distance for
each individual that indicates how far away it is from executing the desired program structure.
Individuals closer to the execution of the desired program structure are selected as parents and
combined to produce offspring individuals.
The fitness functions of the partial aims consist of two components -- the approximation level and
the local distance calculation. The approximation level supplies a figure for an individual that gives
the number of branching nodes lying between program structures covered by the individual and
the desired program structure. For this computation, only branching nodes that contain an
outgoing edge resulting in a miss of the desired program structure are taken into account. In
addition, the calculation of the local distance is made in order to distinguish between different
individuals executing the same program branch. A distance to the execution of the sibling branch
is calculated for the individual by means of the branching conditions in the branching node in
which the target node is missed. 
Although only one partial aim after the other is processed by the Evolutionary Test, the execution
of a test datum usually leads to passing several partial aims. Thus, the test soon focuses on those
program structures which are difficult to reach. After the processing of all partial aims, the tester
is provided with a minimal amount of test data, leading to an execution of all reached partial aims.
A detailed definition of the fitness functions and the test environment consisting of a parser, an
instrumenter, a test driver generator, and a test control for the automation of the evolutionary
structural test can be found in [21] and [1].

3.3.1 Experimental results
The Evolutionary Test has already been applied in various tests of real-world examples for the
automatic generation of test data with excellent results. A complete coverage was achieved for
most test objects. Figure 5 shows the results obtained from the examination of test objects from
different application fields. 
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Figure 5: Structural test results for various complex tasks

On the left hand side the results of the mean coverage achieved by evolutionary and random
testing are displayed. On the right hand side of Figure 5, the mean number of test data generated
by the evolutionary, the random tests and its ratio are presented. One branch in the Netflow()
function is infeasible. This leads to the highest possible coverage of 99.3%. Evolutionary testing
performed notably better than random testing for all the functions mentioned.Even though



- 11 -

between 5 and 63 times more test data were generated for random testing, the coverage reached
is not as good as for evolutionary testing.

4 Conclusion

The overall results show evolutionary testing to be a promising approach for fully automating test
case design for various testing methods and aims. In order to increase the effectiveness and
efficiency of the test, and thus to reduce the overall development costs for software-based
systems, we require a test which is systematic and extensively automatable.
Evolutionary testing is based on the idea of searching for relevant test cases in the input domain
of the system under test with the help of evolutionary algorithms. Evolutionary testing enables the
complete automation of test case design whenever the test aim can be expressed numerically,
e.g. when performing temporal behavior testing or structural testing. 
Due to the full automation of evolutionary testing, the effectiveness and efficiency of the test
process can be clearly improved in all these application fields. The system under investigation can
be tested with a large number of different input situations both for testing temporal behavior and
for safety tests. In most cases, more than several thousand test data are generated and executed
within a few minutes. Evolutionary tests thus contribute to quality improvement as well as to the
reduction of development costs for embedded systems. 
The test generation results provided by evolutionary testing for temporal behavior are efficient and
of high quality compared to the results achieved with static analyses. Whilst the Evolutionary Test
is fully automatable, the static analysis involves extensive manual work in order to achieve an
exact estimate, e.g. the exclusion of infeasible paths. Additional time-consuming work for the
static analysis, e.g. the simulation of the machine model of the CPU, memory, the consideration of
cache and pipelining effects makes it very expensive to provide this method for new CPUs. 
The application scope of Evolutionary Tests goes further than the work described in this paper.
Additional application fields are, for instance, functional [9] and robustness tests [16]. 
We are also investigating the application of evolutionary structural tests to testing temporal
behavior of systems. The idea is to pre-determine program paths, identified as worst-case
execution time paths by means of static analyses (e.g. [12] and [15]), as test aims for the
evolutionary structural test. If a test datum can be found that executes the path we can be sure
that this is the longest execution time which it is possible to obtain. As a result of pessimistic
assumptions in static analyses the path will usually not be executable. However, the pre-definition
of these paths can lead to a very interesting concentration on paths with long execution times.
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