
Testing the Temporal Behavior of Real-Time Software Modules
using Extended Evolutionary Algorithms

3 Evolutionary Testing

5 Experiments

1 Motivation

• list of 500 variables,
each variable in range
[-32768, 32767]

•bubble sort variables

•analysis results:
� many plateaus
� many local minima
� correlation between

variables

6 Summary

2 Testing temporal behavior

4 Search space analysis

Costs for development and test of embedded systems
→ 50 % implementation, 30 % unit testing, 20 % system testing

⇒ 50 % of development costs spent for testing

Objectives of testing real-time systems
→ finding errors in functional behavior

→ finding errors in temporal behavior

→ building up confidence in the correct functioning of the test
object by executing the system under test with selected inputs

Analysis of bubblesort modul

New approach:
Testing temporal behavior by Evolutionary Testing

Advantages:
+ automatic search for the longest and shortest execution times
+ suited for discontinuous target functions

+ suited for complex input domains with many parameters
+ can escape local optima (search by multiple individuals)

+ direct assessment of objective value: execution time of individual

But:
− finding the extreme execution times is not guaranteed

• Combination of systematic testing and Evolutionary Optimization
opens up further potential for improvement

→ perform systematic test to examine functional correctness

→ use systematically produced test data to inoculate initial population of
Evolutionary Algorithm

→ apply Evolutionary Testing to find extreme execution times

References
[1] Grochtmann, M., and Wegener, J.: Evolutionary Testing of Temporal Correctness. Proceedings of Quality Week Europe ’98, 1998.
[2] Pohlheim, H.: Entwicklung und systemtechnische Anwendung Evolutionärer Algorithmen. Aachen, Germany: Shaker Verlag, 1998.

(Development and Engineering Application of Evolutionary Algorithms. Ph.D. thesis, in German), http://www.pohlheim.com/diss/
[3] Wegener, J., and Grochtmann, M.: Verifying Timing Constraints of Real-Time Systems by Means of Evolutionary Testing. Real-Time

Systems, 15, pp. 275-298, 1998.

[4] Wegener, J., and Pitschinetz, R.: TESSY - Yet Another Computer–Aided Software Testing Tool? Proceedings of the Second European
International Conference on Software Testing, Analysis & Review EuroSTAR ’94, 1994.

Optimization of bubblesort modul (minimal
execution time): best objective value over 1000
generations, optimum found in generation 746

Hartmut Pohlheim, Joachim Wegener, DaimlerChrysler AG, Research and Technology, FT3/SM, Berlin, Germany

Testing temporal system behavior
→ find violations of specified timing constraints (find the inputs

with longest and shortest execution time)

→ check whether they produce a temporal error (outputs are
produced prematurely or their computation takes too long)

⇒ testing temporal behavior is a complex task
Problem:

→ lack of appropriate test procedures
→ tester uses conventional test methods

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8
x 10

6

generation

ob
je

ct
iv

e 
va

lu
e

Best objective values

generation

nu
m

be
r 

of
 v

ar
ia

bl
e

best individuals

0 200 400 600 800 1000

50

100

150

200

250

300

350

400

450

500
−3

−2

−1

0

1

2

3

x 10
4

Optimization of bubblesort modul
•execution time measured by
QUANTIFY (Rational)

•Evolutionary Algorithm for
integer/permutation variables:

� 6 subpopulations (regional model),
each 50 indiv., 1000 generations

� different strategies per
subpopulation

� discrete recombination / order
crossover

� integer mutation and swap mutation
� competition between subpopulations

test execution with automatic measurement
of execution times on the target computer

Comparison with specified
timing constraints, if necessary
error correction by developer

Test results:
worst-case and best-case
values of execution time

execution times
(objective values)

test data
(individuals) test driver on target system

software module

automatic generation of test data by
Evolutionary Algorithms (host)

Selection

Recombination

Mutation

Reinsertion

Evolutionary
Algorithm Evaluation

Optimization of motor control software modules

max. exec. time in µs
module
name

evolutionary
testing

developer
test

lines of
code

para-
meters

zr2 69,6 µs 67,2 µs 41 18
t1 120,8 µs 108,4 µs 119 18
mc1 112,0 µs 108,4 µs 98 17
mr1 68,8 µs 64,0 µs 81 32
k1 59,6 µs 57,6 µs 39 14
zk1 58,4 µs 54,0 µs 56 9

•exec. time measured on target system

•Evolutionary Algorithm for integer
variables (parameter optimization):

� 3 subpopulations (regional model),
each 20 individuals over 100 generations

� use of different strategies per subpopulation
� discrete and double point recombination
� integer mutation (different mutation range)
� competition between subpopulations

•Evolutionary Testing found longer
execution times for all given modules

• results were compared to the times determined by the developers with systematic testing

1.08
1.1

1.12
1.14

x 10
4

1.14

1.16

1.18

x 10
4

3.875

3.8751

3.8752

3.8752

3.8752

x 10
6

variable 150

 Bubble sort − integer

variable 250

ob
je

ct
iv

e 
va

lu
e

3-D variation plot (execution time of bubblesort
modul): variable 150 and 250 in a small area (0.6%)
of the search space

100 200 300 400 500 600 700 800
4.461

4.4615

4.462

4.4625

4.463

4.4635
x 10

4 Merkmalsextraktion 1

variable 3

ob
je

ct
iv

e 
va

lu
e

400 410 420 430 440
400

405

410

415

420

425

430

435

440

variable 3

Merkmalsextraktion 1

va
ria

bl
e 

4

4.4615

4.462

4.4625

4.463

4.4635

x 10
4 •843 variables in [0, 4095]

•defining a 29x29 pixel
matrix out of an
287x1200 pixel picture

•analysis results:
� large steps in objective

values even for small
changes in variable values

� large plateaus without
change of objective value

Evolutionary Testing
Use of Evolutionary Optimization to determine longest and shortest execution times automatically.

Optimization of bubblesort modul (same run as
left): variables of best individual per generation
over 1000 generations (“sorting of variables”)

Analysis of feature extraction modul (ME)

2-D color quilt variation plot (execution time of
feature extraction): toggle brightness (min/max
variable value) at 2 variable positions (400-440)

2-D variation plot (execution time of feature
extraction): toggle 1 brightness value over all
variable positions

• temporal behavior forms a very
complex multi-dimensional
search space

•many plateaus, local minima
and discontinuities

� several input data executing the same
program path are identical

� different program paths lead to
irregular changes of the exec. times

• two analysis examples provided
� bubblesort modul (benchmark)
� feature extraction ME (real world)

Integration of Evolutionary Algorithm and time measurement equipment

•each individual represents a test datum
•execution time for each test datum
determines its objective value

•when looking for worst-case execution
time: test data with long execution time
obtain high fitness values and vice versa

employed tools:
•GEATbx: Genetic and Evolutionary
Algorithm Toolbox for Matlab
(www.geatbx.com)

•QUANTIFY by Rational Software Corp.
(www.rational.com)


