Testing the Temporal Behavior of Real-Time Engine Control
Software Modules using Extended Evolutionary Algorithms

Hartmut Pohlheim, Joachim Wegener, Harmen Sthamer, DaimlerChrysler AG, Research and Technology, FT3/SM, Berlin, Germany

1 Motivation 2 Testing temporal behavior

Costs for development and test of embedded systems Testing temporal system behavior

— 50 % implementation, 30 % unit testing, 20 % system testing — find violations of specified timing constraints (find the inputs

. 1 h 1 h . .
= 50 % of development costs spent for testing with longest and shortest execution time)

— check whether they produce a temporal error (outputs are
produced prematurely or their computation takes too long)

= testing temporal behavior is a complex task

Objectives of testing real-time systems

— finding errors in functional behavior

— finding errors in temporal behavior

— building up confidence in the correct functioning of the test
object by executing the system under test with selected inputs

Problem:
— lack of appropriate test procedures
— tester uses conventional test methods

\ Evolutionary Testing /

Use of Evolutionary Optimization to determine longest and shortest execution times automatically.

3 Evolutionary Testing

Integration of Evolutionary Algorithm and time measurement equipment

4 Search space analysis

s temporal behavior forms a very
complex multi-dimensional

Analysis of bubblesort modul

Bubble sort - integer

.. search space) +list of 500 variables,
automatic generation of test databy x10 y e v e i
Evolutionary Algorithms (host) test execution with automatic measurement *many Plateausa local minima = I';M !
= /1Al
of execution times on the target computer and discontinuities Eh) T range [-32768,
....................................... = several input data executing the same %: o i - 32767]

Test results:
worst-case and best-case

' (objective values) ;

_

Comparison with specified
timing constraints, if necessary

= bubblesort modul (benchmark)

= feature extraction ME (real world)

= many local minima

test data . program path are identical *bubble sort variables
) (individuals) test driver on target system - diff t ths lead t
Evolutionary Ca tierent program paths fead o ... *analysis results:
: Algorithm : 3 irregular changes of the exec. times S e D :
: — : — Y T | ided T xac* = many plateaus
, cxecution times 3 software module *two ana ysis examples provide vanable 250 vatiabie 150

3-D variation plot (execution time of bubblesort
modul): variable 150 and 250 in a small area (0.6%)
of the search space

= correlation between
variables

Analysis of feature extraction modul (ME)

) : ; Merkmalsextraktion 1 x10' sagas 19" MerkmalsTxnaknum o 8 43 Variabl es in [o’
values of execution time error correction by developer 44635
4095]
as3 HHWMMIH I . .
ool * defining a 29x29 pixel
+each individual represents a test datum employed tools: 5 matrix out of an
o 9 . = £ 4462 . .
* execution time for each test datum * TESSY by DaimlerChrysler AG, 287x1200 pixel picture
determines its objective value (ATS GmbH, www.ats-berlin.de) + analysis results:
‘ = large steps in objective

*when looking for worst-case execution
time: test data with long execution time
obtain high fitness values and vice versa

* GEATbx: Genetic and Evolutionary
Algorithm Toolbox for Matlab
(www.geatbx.com)

2.461

410 420 430 440
variable 3

2-D color quilt variation plot (execution time of
feature extraction): toggle brightness (min/max

2-D variation plot (execution time of feature
extraction): toggle 1 brightness value over all

I
100 200 300 400 500 600 700 800

varable 3 values even for small
changes in variable values

= large plateaus without
change of objective value

variable value) at 2 variable positions (400-440) variable positions

5 Experiments

Optimization of engine control software modules

6 Summary

New approach:

: i L _ _ Testing temporal behavior by Evolutionary Testing
1st industrial application of Evolutionary Testing

Advantages:
sresults were compared to the * Evolutionary Algorithm for integer variables: . o
) omp Y AL o £ . + automatic search for the longest and shortest execution times
times determined by the = 3 subpopulations each 20 individuals over 100 generations)) _ _
developers with systematic = different strategies per subpopulation, competition + suited for discontinuous target functions
testin gan d random testin g = discrete recombination and integer mutation (different range) + suited for complex input domains with many parameters
max. execution time in s + can escape local optima (search by multiple individuals)
& found longest execution times module Evolutionary ~developer random program para- + direct assessment of objective value: execution time of individual
. name Testing test testing lines meters
BT e R
:) t 1208ps 108,4ps 1160 ps 119 18 — finding the extreme execution times is not guaranteed
(1/3 of random testing) mel 112,0ps 108,4ps 110,0 us 98 17
N 1as SRIT 1 68,8 64,0 s 45,2 us 81 32 s .
* higher reliability than random %" o6 S6m Stop 1 14 » Combination of systematic testing and Evolutionary Optimization
testing ki s8dps 540us S8Aps 56 9 opens up further potential for improvement
— perform systematic test to examine functional correctness
Optimization of bubblesort modul — use systematically produced test data to inoculate initial population of
B ot sl o Evolutlonary. Algorlthm. o
v e e s e — apply Evolutionary Testing to find extreme execution times

. *Evolutionary Algorithm for
o integer/permutation variables:

- = 6 subpopulations (regional model),
each 50 indiv., 1000 generations

References

[1] Grochtmann, M., and Wegener, J.: Evolutionary Testing of Temporal Correctness. Proceedings of Quality Week Europe "98, 1998.
[2] Pohlheim, H.: Evolutiondre Algorithmen - Verfahren. Operatoren, Hinweise aus der Praxis. Berlin, Heidelberg, Germany: Springer-Verlag,
1999. http://www.pohlheim.com/eavoh/index.html
= different Strategies per subpopulation [3] Wegener, J., and Grochtmann, M.: Verifying Timing Constraints of Real-Time Systems by Means of Evolutionary Testing. Real-Time
A = discrete recombination / order Systems, 13, pp. 275-298, 1998.
COSEEF [4] WegenEf, J., and Pitschinetz, R.: TESSY - _Yet Anothe.r Comquer—Aided Software Testing Tool? Proceedings of the Second European
International Conference on Software Testing, Analysis & Review EuroSTAR °94, 1994.

o 20) &0 w00 1000 40 60 80 1000
generaion generaion

Optimization of bubblesort modul (minimal

execution time): best objective value over 1000

generations, optimum found in generation 746

Optimization of bubblesort modul (same run as
left): variables of best individual per generation
over 1000 generations (“sorting of variables™)

= integer mutation and swap mutation
= competition between subpopulations

Pohlheim, May 2000

