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1 Motivation 2 Testing temporal behavior

Costs for development and test of embedded systems Testing temporal system behavior

— 50 % implementation, 30 % unit testing, 20 % system testing — find violations of specified timing constraints (find the inputs

. 1 h 1 h . .
= 50 % of development costs spent for testing with longest and shortest execution time)

— check whether they produce a temporal error (outputs are
produced prematurely or their computation takes too long)

= testing temporal behavior is a complex task

Objectives of testing real-time systems

— finding errors in functional behavior

— finding errors in temporal behavior

— building up confidence in the correct functioning of the test
object by executing the system under test with selected inputs

Problem:
— lack of appropriate test procedures
— tester uses conventional test methods

\ Evolutionary Testing /

Use of Evolutionary Optimization to determine longest and shortest execution times automatically.

3 Evolutionary Testing

Integration of Evolutionary Algorithm and time measurement equipment

4 Search space analysis

s temporal behavior forms a very
complex multi-dimensional

Analysis of bubblesort modul
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Comparison with specified
timing constraints, if necessary

= bubblesort modul (benchmark)

= feature extraction ME (real world)

= many local minima
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3-D variation plot (execution time of bubblesort
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= correlation between
variables

Analysis of feature extraction modul (ME)
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*when looking for worst-case execution
time: test data with long execution time
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* GEATbx: Genetic and Evolutionary
Algorithm Toolbox for Matlab
(www.geatbx.com)
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= large plateaus without
change of objective value
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5 Experiments

Optimization of engine control software modules

6 Summary

New approach:

: i L _ _ Testing temporal behavior by Evolutionary Testing
1st industrial application of Evolutionary Testing

Advantages:
sresults were compared to the * Evolutionary Algorithm for integer variables: . o
) omp Y AL o £ . + automatic search for the longest and shortest execution times
times determined by the = 3 subpopulations each 20 individuals over 100 generations ) ) _ _
developers with systematic = different strategies per subpopulation, competition + suited for discontinuous target functions
testin gan d random testin g = discrete recombination and integer mutation (different range) + suited for complex input domains with many parameters
max. execution time in s + can escape local optima (search by multiple individuals)
& found longest execution times module Evolutionary ~developer  random  program para- + direct assessment of objective value: execution time of individual
. name Testing test testing lines  meters
BT e R
: ) t 1208ps  108,4ps 1160 ps 119 18 — finding the extreme execution times is not guaranteed
(1/3 of random testing) mel 112,0ps  108,4ps  110,0 us 98 17
N 1as SRIT 1 68,8 64,0 s 45,2 us 81 32 . . . . . s .
* higher reliability than random %" o6 S6m Stop 1 14 » Combination of systematic testing and Evolutionary Optimization
testing ki s8dps  540us  S8Aps 56 9 opens up further potential for improvement
— perform systematic test to examine functional correctness
Optimization of bubblesort modul — use systematically produced test data to inoculate initial population of
B ot sl o Evolutlonary. Algorlthm. o
v e e s e — apply Evolutionary Testing to find extreme execution times

. *Evolutionary Algorithm for
o integer/permutation variables:

- = 6 subpopulations (regional model),
each 50 indiv., 1000 generations
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Optimization of bubblesort modul (minimal

execution time): best objective value over 1000

generations, optimum found in generation 746

Optimization of bubblesort modul (same run as
left): variables of best individual per generation
over 1000 generations (“sorting of variables™)

= integer mutation and swap mutation
= competition between subpopulations
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