
Testing the Temporal Behavior of Real-Time Engine Control
Software Modules using Extended Evolutionary Algorithms

3 Evolutionary Testing

5 Experiments

1 Motivation

• list of 500 variables, 
each variable in 
range [-32768, 
32767]

•bubble sort variables
•analysis results:

! many plateaus
! many local minima
! correlation between 

variables

6 Summary

2 Testing temporal behavior

4 Search space analysis

Costs for development and test of embedded systems
→ 50 % implementation, 30 % unit testing, 20 % system testing

⇒ 50 % of development costs spent for testing
Objectives of testing real-time systems

→ finding errors in functional behavior
→ finding errors in temporal behavior
→ building up confidence in the correct functioning of the test 

object by executing the system under test with selected inputs

Analysis of bubblesort modul 

New approach:
Testing temporal behavior by Evolutionary Testing

Advantages:
+ automatic search for the longest and shortest execution times
+ suited for discontinuous target functions
+ suited for complex input domains with many parameters
+ can escape local optima (search by multiple individuals)
+ direct assessment of objective value: execution time of individual

But:
− finding the extreme execution times is not guaranteed

• Combination of systematic testing and Evolutionary Optimization 
opens up further potential for improvement

→ perform systematic test to examine functional correctness
→ use systematically produced test data to inoculate initial population of

Evolutionary Algorithm
→ apply Evolutionary Testing to find extreme execution times

References
[1] Grochtmann, M., and Wegener, J.: Evolutionary Testing of Temporal Correctness. Proceedings of Quality Week Europe ’98, 1998.
[2] Pohlheim, H.: Evolutionäre Algorithmen - Verfahren. Operatoren, Hinweise aus der Praxis. Berlin, Heidelberg, Germany: Springer-Verlag, 

1999. http://www.pohlheim.com/eavoh/index.html
[3] Wegener, J., and Grochtmann, M.: Verifying Timing Constraints of Real-Time Systems by Means of Evolutionary Testing. Real-Time 

Systems, 15, pp. 275-298, 1998.
[4] Wegener, J., and Pitschinetz, R.: TESSY - Yet Another Computer–Aided Software Testing Tool? Proceedings of the Second European 

International Conference on Software Testing, Analysis & Review EuroSTAR ’94, 1994.Optimization of bubblesort modul (minimal 
execution time): best objective value over 1000 
generations, optimum found in generation 746

Hartmut Pohlheim, Joachim Wegener, Harmen Sthamer, DaimlerChrysler AG, Research and Technology, FT3/SM, Berlin, Germany

Testing temporal system behavior
→ find violations of specified timing constraints (find the inputs

with longest and shortest execution time)
→ check whether they produce a temporal error (outputs are 

produced prematurely or their computation takes too long)
⇒ testing temporal behavior is a complex task

Problem:
→ lack of appropriate test procedures
→ tester uses conventional test methods

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8
x 10

6

generation

ob
je

ct
iv

e 
va

lu
e

Best objective values

generation

nu
m

be
r 

of
 v

ar
ia

bl
e

best individuals

0 200 400 600 800 1000

50

100

150

200

250

300

350

400

450

500
−3

−2

−1

0

1

2

3

x 10
4

Optimization of bubblesort modul
•benchmark problem for 
execution time measurement

•Evolutionary Algorithm for 
integer/permutation variables:

! 6 subpopulations (regional model),
each 50 indiv., 1000 generations

! different strategies per subpopulation
! discrete recombination / order 

crossover
! integer mutation and swap mutation
! competition between subpopulations

test execution with automatic measurement
of execution times on the target computer

Comparison with specified
timing constraints, if necessary
error correction by developer

Test results:
worst-case and best-case
values of execution time

execution times
(objective values)

test data
(individuals) test driver on target system

software module

automatic generation of test data by
Evolutionary Algorithms (host)

Selection

Recombination

Mutation

Reinsertion

Evolutionary
Algorithm Evaluation

Optimization of engine control software modules

1.08
1.1

1.12
1.14

x 10
4

1.14

1.16

1.18

x 10
4

3.875

3.8751

3.8752

3.8752

3.8752

x 10
6

variable 150

 Bubble sort − integer

variable 250

ob
je

ct
iv

e 
va

lu
e

3-D variation plot (execution time of bubblesort 
modul): variable 150 and 250 in a small area (0.6%) 
of the search space

100 200 300 400 500 600 700 800
4.461

4.4615

4.462

4.4625

4.463

4.4635
x 10

4 Merkmalsextraktion 1

variable 3

ob
je

ct
iv

e 
va

lu
e

400 410 420 430 440
400

405

410

415

420

425

430

435

440

variable 3

Merkmalsextraktion 1

va
ria

bl
e 

4

4.4615

4.462

4.4625

4.463

4.4635

x 10
4 •843 variables in [0, 

4095]
•defining a 29x29 pixel 
matrix out of an 
287x1200 pixel picture 

• analysis results:
! large steps in objective 

values even for small 
changes in variable values

! large plateaus without 
change of objective value

Evolutionary Testing
Use of Evolutionary Optimization to determine longest and shortest execution times automatically.

Optimization of bubblesort modul (same run as 
left): variables of best individual per generation 
over 1000 generations (“sorting of variables”)

Analysis of feature extraction modul (ME)

2-D color quilt variation plot (execution time of 
feature extraction): toggle brightness (min/max 
variable value) at 2 variable positions (400-440)

2-D variation plot (execution time of feature 
extraction): toggle 1 brightness value over all 
variable positions

• temporal behavior forms a very 
complex multi-dimensional 
search space

•many plateaus, local minima 
and discontinuities 

! several input data executing the same 
program path are identical

! different program paths lead to 
irregular changes of the exec. times

• two analysis examples provided
! bubblesort modul (benchmark)

! feature extraction ME (real world)

Integration of Evolutionary Algorithm and time measurement equipment

• each individual represents a test datum
•execution time for each test datum 
determines its objective value

•when looking for worst-case execution 
time: test data with long execution time 
obtain high fitness values and vice versa

employed tools:
•TESSY by DaimlerChrysler AG, 
(ATS GmbH, www.ats-berlin.de) 

•GEATbx: Genetic and Evolutionary 
Algorithm Toolbox for Matlab 
(www.geatbx.com)

Pohlheim, May 2000

" found longest execution times 
for all given modules

" used considerable less time
(1/3 of random testing)

" higher reliability than random 
testing 

max. execution time in µµµµs
module
name

Evolutionary
Testing

developer
test

random
testing

program
lines

para-
meters

zr2 69,6 µµµµs 67,2 µs 66,4 µs 41 18
t1 120,8 µµµµs 108,4 µs 116,0 µs 119 18
mc1 112,0 µµµµs 108,4 µs 110,0 µs 98 17
mr1 68,8 µµµµs 64,0 µs 45,2 µs 81 32
k1 59,6 µµµµs 57,6 µs 54,0 µs 39 14
zk1 58,4 µµµµs 54,0 µs 58,4 µµµµs 56 9

• Evolutionary Algorithm for integer variables:
! 3 subpopulations each 20 individuals over 100 generations
! different strategies per subpopulation, competition
! discrete recombination and integer mutation (different range)

•results were compared to the 
times determined by the 
developers with systematic 
testing and random testing

1st industrial application of Evolutionary Testing


