
Test Sequence Generation from Classification
Trees using Multi-agent Systems

Peter M. Kruse

Berner & Mattner Systemtechnik GmbH,
Gutenbergstr. 15, 10587 Berlin, Germany
peter.kruse@berner-mattner.com
http://www.berner-mattner.com

Abstract. The combinatorial test design and combinatorial interac-
tion testing are well studied topics. For the generation of dynamic test
sequences from a formal specification of combinatorial problems, there
has not been much work yet. The classification tree method imple-
ments aspects from the field of combinatorial testing. We will extend
the classification tree by additional information to allow the interpre-
tation of the classification tree as a hierarchical concurrent state ma-
chine. Using this state machine, our new approach then uses a Multi-
agent System to generate test sequences by finding and rating valid
paths through the state machine.

Keywords: Test sequence generation, classification trees, state ma-
chines

1 Introduction

Software has become a central part of our everyday life, both visible to and
hidden from human notice. Software controls alarm clocks, coffee and wash-
ing machines, the garage door, or the house alarm system. Car engines have
a software driven engine control unit. Car radios use software to play music
files from a wirelessly connected mobile phone, which itself contains soft-
ware. Traffic lights and intelligent traffic signs are controlled by software,
as well as GPS devices used to guide our ways. There is already software in-
side the human body as part of heart pacemakers or intelligent prostheses.

Since software is omnipresent nowadays, software quality becomes cru-
cial. One way to ensure software quality is software testing. Other ways
include formal reviews and mathematical proofs.

The classification tree method [GG93] can be used for test planning and
test design. It allows for a systematic specification of the system under test
and its corresponding test cases.

The classification tree method has been implemented by a graphical ed-
itor, the classification tree editor [LW00]. The editor has adopted results
from the field of combinatorial interaction testing [NL11], which allows to

http://www.berner-mattner.com

2 Test Sequence Generation using Multi-agent Systems

generate certain test suites automatically after the specification of the sys-
tem under test has been given.

So while the classification tree method and the corresponding editor are
of great help for test engineers, there is still a mayor short-coming: Test
sequences (a series of test steps) can only be defined manually. There is no
concept for dependency rules between single test steps nor automated test
sequence generation in the classification tree editor.

In this work we develop an approach for test sequence generation
with the classification tree method, which is analogue to existing test suite
generation introducing advanced dependency rules and new genera-
tion rules. Advanced dependency rules must allow the specifications of con-
straints between different test steps of a test sequence while new generation
rules will specify coverage levels to be reached with the set of all generated
test sequences. For implementation, we will use a multi-agent approach.

2 Design

For our new approach, we want to enable test sequence generation from
classification trees. Analogously to existing approaches, we identify three
kinds of parameters for test sequence generation, the classification tree it-
self, dependency rules and generation rules. The classification tree holds all
parameters and their corresponding values of the system under test. For de-
pendency rules, we extend existing rules to new rules describing constraints
between single test steps. Our new rules apply per test sequence. Within
each test sequence, dependency rules must not be violated. The generation
rules describe desired coverage levels for the resulting set of test sequences.
The set of test sequences as a whole must respect the generation rule.

New dependency rules: Existing dependency rules allow the user to
specify constraints between parameter values of different parameters within
one test case. With the new extended dependency rules, it should be possi-
ble to specify constraints between parameter values from one test step to
another. The following types of dependency rules shall be supported (with
i, j, k, n, o ∈ N; m ∈ Z):

– If class ci from classification C is selected in test step tn, then class cj
from classification C must be selected in the succeeding test step tn+1.

– If C = ci in tn, then C = cj in a later tn+m.
– If C = ci in tn, then C = cj in all tn+1 to tn+m.
– If C = ci in tn, then C = cj in all tn+m to tn+o.
– Compositions of any (AND, OR, NOT, NAND, NOR, XOR, ...) combina-

tion, e.g. if C = ci OR B = bk in tn, then D = NOT dj in a later tn+m.

The existing dependency rules are a subset of our new dependency rules for
tn and tn+m with m = 0.

Classic dependency rules are valid for manually created test cases, too.
We want our new dependency rules to be available for manually created test
sequences, as well.

Test Sequence Generation using Multi-agent Systems 3

New generation rules: In analogy to conventional test generation, cov-
ering all pairs of transitions between classes of the classification tree could
be defined as well. Conventional test case generation supports mixed strength
generation as well as seeding, so we require them as well.

New generation rules should allow any t-wise coverage for both classes
and transitions. Note that some of Kuhn’s t-way sequences [KKL10] can be
mapped to our generation rules.

Kuhn’s 1-way sequence coverage corresponds to 1-wise (or minimal) class
coverage here. Each class is supposed to be in the result set at least once.
Our approach extends conventional class coverage for test cases to test se-
quences.

Kuhn’s 2-way sequence coverage corresponds to our 1-wise (or minimal)
transition coverage. All valid transitions (pairs of states) are supposed to be
in the result set at least once. In conventional test case generation, there is
no coverage criterion for transitions.

Higher n-way (with n > 2) sequence coverage is not yet included and will
be future work. Instead, we require higher n-wise (with n > 1) coverage for
both classes and transitions. We have included pairwise class and transition
coverage.

The generation rules should take classifications as parameters to specify
their focus. The number of parameters should not be restricted. Elements of
generation rules should be combinable to allow mixed strength generation.
It should be possible to seed in a set of manually created test sequences. The
generation algorithm should then analyze this set and take these sequences
into account. The generation should, of course, take the dependency rules
into account.

Approach: Our approach for test sequence generation is based on an
idea proposed by Conrad [Con05], who suggests that the interpretation of
classification trees as parallel FSMs together with a set of test sequences
allows measuring coverage levels.

Fig. 1: Classification tree for the keyboard example

Example keyboard states: Given a classification tree keyboard (Figure 1)
together with a set of (manually specified) test sequences, we can derive a
parallel state machine (Figure 2).

4 Test Sequence Generation using Multi-agent Systems

Fig. 2: Parallel FSM for the keyboard example [Mir09]

In UML state charts, parallel states are called orthogonal regions [Obj10,
Section 15.3.10].

Conrad’s approach, however, lacks some details:

1. He does not give advice how to interpret classification trees with re-
finements. All trees in his examples are flat trees; there are no refined
classes.

2. There is no distinction between directions of transitions. All examples
given do not differ between transitions to or from a node. Loops are
missing as well.

3. His approach does not handle dependencies. The test engineer has to
decide on his own, which combination of classes and which order of con-
secutive test steps are valid.

4. There is (to our best knowledge) no automatic test sequence generation
in Conrad’s approach. The test engineer has to specify all test sequences
manually.

We will now handle these short comings one-by-one:

1. The interpretation of refined classes can be easily accomplished by map-
ping them to hierarchical states in state machines. This concept is known
from Harel statecharts [Har87], as well. As in classification trees, stat-
echarts can be modeled top-down, from overview to detail, by refining
states with a set of substates. This allows different levels of granular-
ity within a single statechart at different hierarchies. We will from now
on call the parallel FSM approach the Hierarchical Concurrent finite
State Machine (HCSM) approach. Note that we renamed parallel to con-
current, added hierarchies and dropped finite from the abbreviation in
analogy to [Luc89].

2. We will differentiate between different transition directions and will en-
force loop transitions (transitions, where start-node and end-node are
the same) if they exist. For this to work, we will annotate these details
to the concerning tree elements.

3. For the handling of dependencies, we will use our own initial depen-
dency rule approach for test sequence generation, here. We will model

Test Sequence Generation using Multi-agent Systems 5

transition guards as well using this technique to have only one central
dependency handling.

4. The actual test sequence generation will be given in detail next.

For the actual test sequence generation from classification trees, we make
some default assumptions:

– In any given plain classification tree, there are no transitions between
classes, resulting into an unconnected graph. Test sequence generation
will lead to sequences with only one single test step. These test suites
are similar to conventional test case generation. Transition coverage is,
of course, not available.

– We allow all classes to be reached at start.
– Classifications do not have a (deep) history.

The conversion algorithm from classification trees to HCSM is given next
(Figure 3).

The build-method takes a tree item as the input parameter and returns
its corresponding state machine. First, a list of child states is prepared by
recursively building all children of the current tree item.

The build-method then distinguishes between several cases: If the cur-
rent tree item is a class or a composition (Line 9), it distinguishes again
between the number of children. If a class or a composition has more than
one child (Line 10), then this tree item is a parallel state and all children are
partitions of it. If a class or a composition has exactly one child (Line 22), it
is skipped by directly adding all the child’s children to the current tree item.
In all other cases, e.g. the tree item is a class or a composition without any
children or the tree item is a classification, the prepared list of children is
used as the result’s list of children (Line 28).

All transitions and possible start states stored in the classification are
read and the result is returned.

3 Implementation

We use two phases and two kinds of agents to traverse the tree. Travelling is
done in such a manner that only valid paths are taken and that all travelled
paths together already result into the desired coverage, so that there is no
need for subset selection.

For the realization, we introduce two kinds of agents: The walker agent
and the coverage agent. Both agents will cooperatively traverse the HCSM
following the algorithm given in the next section.

Walker agents: The task of this agent is to actually walk through the
statechart. The walker agents are very simple. There is only one kind of
walker. Walkers do not have a special order; all of them have the same im-
portance. Walkers can have different lifecycles. They are created and re-
moved on demand. There typically is one walker per active state. Walkers

6 Test Sequence Generation using Multi-agent Systems

1: build (treeItem)
2: state = new State
3: List children = new List()
4: for all child of treeItem.getChildren do
5: childState = build(child)
6: children.add(childState)
7: end for
8: Boolean addChildren = !children.isEmpty()
9: if treeItem is Class || treeItem is Composition then

10: if treeItem.children.count > 1 then
11: addChildren = false
12: result = concurrentState(result)
13: List subStates = new List()
14: for all item of children do
15: if item is SubState then
16: result.addSubState(item)
17: end if
18: end for
19: else
20: if treeItem.children.count == 1 then
21: addChildren = false
22: result.setChildren(firstChild.getChildren())
23: result.setPosition(firstChild.getPosition())
24: end if
25: end if
26: end if
27: if addChildren then
28: result.setChildren(children)
29: end if
30: readArcs(treeItem, result)
31: return result

Fig. 3: Classification tree to HCSM algorithm

can decide, whether they are stuck, which means, that there is no more
(valid) transition available. Walkers have a list of child walker, which can
be empty.

Coverage agents: The coverage agents are more sophisticated than the
walker agents. Their task is to measure all current and previous coverage
and to guide the walkers though the statechart. There are different kinds of
coverage agents, one for each type generation-rule term introduced in Sec-
tion 2: State-coverage, transition-coverage, state-pair-coverage, transition-
pair-coverage and so on. We define an order over all coverage agents by a)
their complexity and b) the number of parameters (which is the number
of scopes they cover). The lifecycle of the coverage agents start with the
beginning of the generation process. They remain active until the coverage
criterion they handle is finished. There is one coverage agent per generation

Test Sequence Generation using Multi-agent Systems 7

rule term/component, e.g. the rule

state – pairwise(a, b) + transitions(a, b, c)

results into two coverage agents.
Coverage agents can decide, whether they are finished (both globally and

locally). From this example above, we can explain complexity and number of
parameters, needed for ordering the coverage agents. We use the following
formula to calculate the order of coverage agents:

i = |order|*|parameters|

If two terms have the same index value, we will prefer those term being
early in the generation rule formula. This can result into missing commu-
tative property for certain generation rules.

Walker algorithm: The general idea of the algorithm (Figure 4) is that
all walkers will, one by one, ask the most complex remaining coverage agent
where to go next. By walking the route proposed by the most complex cov-
erage agent first, chances are high to cover elements needed by simpler cov-
erage agents, too. For example, transition coverage for a statechart already
implies state coverage, too.

Very first step is the creation of coverage agents from the generation
rule. Then, the root node (statechart) is selected. This means, a walker is
created for the root node. For each classification (parallel section) under the
root node, the class (node) with the start transition is selected (Lines 4-9).
There will be one walker per classification now. The selection of start nodes
is repeated while a selected class (state) has at least one refinement (inner
states). A new walker is created for each refinement step. It will be added to
the list of child walkers.

When all walkers without child-walkers are on an atomic class, the first
test step is created. This test step is then checked against the conventional
dependency rules. If it is valid, then the test step is added to the test se-
quence (Line 12) and the coverage measure is updated (Line 13). If it is
invalid, then the test sequence generation is cancelled and an empty result
set is given (Line 15) as there are no valid test sequences available from this
specification.

While generation is not finished, each walker without child walkers will
now perform the following steps. It first identifies the most complex remain-
ing coverage agent (Line 20). It will then ask this one agent where to go next
(or to stay) (Line 21). The candidate class is then checked against conven-
tional and new dependency rules together with all walkers already moved
in this turn. If the candidate is valid, we continue with the next walker until
all walkers have walked. We then add this test steps to the test sequence
(Line 32) and update the coverage. We then start the next turn of walking
walkers. If the candidate node does not offer any valid test step, the walker
will take the second best move from the coverage agent candidates and val-
idates it again until a valid test step candidate is found. If all candidates

8 Test Sequence Generation using Multi-agent Systems

1: create coverage agents from rule
2: select root node // statechart
3: create walker
4: for all classification // parallel section do
5: repeat
6: select (inner) start class // node
7: create walker, add to walker child list
8: until class is atomic
9: end for

10: compose test step from selected classes
11: if valid then
12: add test step to sequence
13: update coverage
14: else
15: cancel generation with empty results
16: finished = true
17: end if
18: while not finished do
19: for all walker without child-walker do
20: find coverage agent
21: ask coverage agent where to go or stay
22: decide if stuck
23: if walk transition then
24: while entering a refined class do
25: select (inner) start class
26: create walker, add to walker list
27: end while
28: end if
29: end for
30: compose test step from selected classes
31: if valid then
32: add step to sequence
33: update coverage
34: else
35: backtracking
36: end if
37: end while

Fig. 4: Test sequence generation algorithm, phase 1

fail, the walker will try to stay where it is. If that is not possible, it can still
try to step out, which means, its parent walker will move next. If even that
is not an available option, we start backtracking (Line 35).

The candidate from the previous walker is rejected now and the next best
choice from this previous walker is taken. This is done recursively until one
valid candidate can be found. If there is no candidate (the first walker does
not find a valid option), then the statechart is globally stuck. It will be reset
to its initial state by turning it off and on again.

Test Sequence Generation using Multi-agent Systems 9

If adding test steps to the test sequence does not increase coverage for
a certain number of steps, we will reset the state chart as well and start a
new test sequence. We wait as many steps as there are (inner) classes in
the largest classification. All steps without progress are removed from the
sequence before adding it to the result test suite.

We repeat this until the global coverage is completed, then we can stop,
or if resetting and starting a new sequence does not increase coverage for a
certain number of test sequences. We again wait as many test sequences as
there are (inner) classes in the largest classification. In this case, we start a
second phase for hard to reach configurations.

1: for all coverage agent (in descending order of importance) do
2: for all uncovered item do
3: find path from item to start in a reverse breadth first search
4: if there is valid path then
5: add test sequence of path to result set
6: else
7: drop item from coverage measure
8: end if
9: end for

10: end for

Fig. 5: Test sequence generation algorithm, phase 2

Second phase: The algorithm for the second phase for hard to reach
configuration is given in Figure 5.

The approach is rather simple here. For all coverage agents we get all
uncovered items. We do a reverse breadth first search for paths from this
item to possible start states (Line 3). If a valid path is found, it is added to
the result set (Line 5). If there is no valid path, the item is not reachable
and is dropped (Line 7).

The approach does guarantee the coverage of all coverable items. The
result set however might not be minimal.

Coverage algorithm: The coverage rate algorithm works as follows
(Figure 6). It gets a candidate state or transition. For state coverage, self
transitions are ignored and zero is returned. Otherwise, it then adds this
candidate to a queue together with a weight factor, with an initial weight
factor of one. The initial rating is set to zero. The candidate is added to the
list of rated items. Then while the queue is not empty the algorithm polls
the next state and weight factor from the queue. If the polled node is the
original candidate and if the rating is larger than zero, the algorithm has
found a loop path with new items. This loop path is prefered by adding the
value of 100 to the rating. In this case or when the current item is on the list
of rated items, the while loop steps to its next cycle. Else this node is added
to the list of rated items. If the node is on the list of target states (it has not

10 Test Sequence Generation using Multi-agent Systems

1: candidate state or transition
2: if state coverage && self transition then
3: return 0
4: end if
5: weight = 1.0
6: rating = 0
7: queue += (candidate, weight)
8: while !queue.empty do
9: (item, weight) = queue.poll

10: if item == candidate && rating > 0 then
11: rating += 100
12: continue
13: end if
14: if ratedItems contains then
15: continue
16: end if
17: ratedItems += item
18: if targetNodes contains item then
19: rating += 10 * weight
20: end if
21: if item has (outgoing transition || childnodes || subsections) then
22: weight *= 0.95
23: end if
24: for all (outgoing transition && childnodes && subsections) of item do
25: queue += (item, weight)
26: end for
27: end while
28: return rating

Fig. 6: Rating of candidates

been used in any test step before), the algorithm adds 10 times the weight
factor to the result rating. Then if there are outgoing transitions, child nodes
or subsections, the weight factor is multiplied with a punishment value of
0.95. Target states of outgoing transitions, child nodes and subsections are
then added to the queue together with the new weight factor. When the
queue is empty the rating is returned.

4 Evaluation

We use the Keyboard example [Mir09] (as given in Figure 2). We found some
more examples in Literature, a Microwave [Luc89], an Autoradio [Hel07],
and of course, Harel’s Citizen watch [Har87].

From the IBM Rhapsody examples, we took the Coffee Machine, the
Communication example, the Elevator, and the Tetris game. In Matlab Si-
mulink Stateflow, we found Mealy Moore, Fuel Control, Transmission, and
Aircraft.

Test Sequence Generation using Multi-agent Systems 11

Details on case studies and results are given in Table 1.

Table 1: Results for test sequence generation

Name St
at

es
T

ra
ns

it
io

ns
(w

it
ho

ut
st

ar
t)

M
in

im
al

Pa
ir

w
is

e

C
om

pl
et

e

St
at

e
C

ov
er

ag
e

T
ra

ns
it

io
n

C
ov

er
ag

e

Keyboard [Mir09] 5 8 2 4 4 2 5
Microwave [Luc89] 19 23 7 28 56 9 17
Autoradio [Hel07] 20 35 11 33 66 13 36
Citizen [Har87] 62 74 31 108 3121 47 51 (92.7%)
Coffee Machine 21 28 9 27 81 9 18
Communication 10 12 7 NA 7 7 17
Elevator 13 18 5 20 80 6 9
Tetris 11 18 10 NA 10 15 31
Mealy Moore 5 11 5 NA 5 5 24
Fuel Control 5 27 5 25 600 5 12
Transmission 7 12 4 12 12 4 9
Aircraft 24 20 5 31 625 4 (86.2%) 7 (2)

The set of case studies is still too small to make final statements on per-
formance, regarding scalability, execution times and result set sizes. Pre-
liminary results are, however, already very promising.

Execution, times: We are not giving detailed figures for generation
times here since they are all below 1sec on an Intel Core2Duo with 2Ghz and
3GB RAM running our java implementation on a single core under Windows
XP.

Evaluation, coverage: Results from the experiments clearly show that
our approach is capable of generating test sequences with given coverage
levels. For State coverage, 100% coverage was reached for 11 of 12 scenar-
ios. The remaining scenario only resulted into 86.2% coverage (scenario Air-
craft). In all 12 cases, coverage was reached in a single test sequence.

For Transition coverage, again for 11 of 12 cases 100% coverage has been
reached. For the Citizen scenario, only 92.7% coverage was archieved. In
11 of 12 cases, the result only consists of one test sequence, while for the
aircraft scenario two sequences were generated. The algorithm has reseted
the walker agents to their initial positions to reach missing states. Note:
Results given here only contain implementation of walker phase one, since
phase two was not available yet.

For 22 of 24 cases, full coverage was reached. We are certain to complete
the two remaining scenarios with phase two implementation.

12 Test Sequence Generation using Multi-agent Systems

Evaluation, size: Test result sizes are not evaluated in our case studies
since there is no comparison available to other approaches yet. For the goal
of test suite minimization we will need to evaluate minimal result suite
size using a brute force approach, allowing us to compare our results For
the brute force approach, we expect to see long execution times making it
impractical for product use.

Scalability: We have not yet tested our approach for very large scale
case studies. If performance decrease is too large, we might reduce the
search depth of coverage agents.

Extendability: We have successfully implemented test sequence gener-
ation for state and transition coverage. Next steps will be the generation
of state pair coverage and transition pair coverage. The implementation
will be more difficult duo to the nature of pairwise coverage problems be-
ing known NP-complete [WP01].

Parameter tuning: We have done experiments on the influence of the
punishment factor for both State and Transition coverage. In a set of 100
experiments each, we have tested all factors from 0.01 to 1.00 for all 12
scenarios. Lower values like 0.1 turns out to be much better than 0.95 as
it was selected earlier. However for one scenario, the Communication ex-
ample. higher punishment values result into smaller test suites and better
coverage. We need to investigate the influence of the other parameters as
well.

5 Related Work

In [CDFY99], Conrad et al. present the automatic import of Simulink Mod-
els into classification trees. They use imported models for systematic deter-
mination of test scenarios. Test scenarios can be either test sequences or
test cases.

Test scenarios are series of stimuli in a certain order and with durations
assigned. They use the combination table of the classification tree editor
to define signal courses. With additional metadata, they annotate the type
of the course. Supported course types are step, ramp and spline, with step
being the default. Their system can be used to model both discrete as well
as continuous signals. The reuse of modeling information from the develop-
ment for test activities reduces time and costs for test modeling.

The approach is further described in [Con05]. The work focuses on the
integration of test scenarios for embedded systems into the development
process. Model-based specification, design and implementation are in place,
but testing still can be improved. Since testing all feasible combinations is
nearly impossible, a good selection of test scenarios determins extent and
quality of the whole test. The automatic creation is desirable but only pos-
sible to a limited extent yet. Which leads to largely manual test design.
The problems of ad-hoc test scenario selections are redundancy and possi-

Test Sequence Generation using Multi-agent Systems 13

ble gabs. They are typically in a very concrete notation with a low level of
abstraction, making reuse difficult.

The proposed solution is a model based testing (MBT) approach [EFW01]
based on an abstract model of the input data. The input partitioning of this
approach implies a parallel state-machine model. Each classification forms
one of the parallel parts (AND-states) of the state-machine. The states de-
note the individual equivalence classes defined for the classification. Test
sequences can be viewed as paths through such a test model.

Making the underlaying test model explicit allows comparing Conrad’s
approach with other MBT approaches. Furthermore, the test model can be
used to formalize different coverage criteria. Conrad suggests the system-
atic scenario selection based on the functional specification.

Current tools supporting the classification tree method do only allow
manual definition of test sequences. There are no generation rules for test
sequence generation; desired coverage levels for a set of test sequences can-
not be specified. Dependency rules to describe constraints between single
steps of test sequences do not exist and can therefore not be checked.

Heimdahl et al. briefly surveys a number of approaches in which test
sequences are generated using model checking techniques [HRV+03]. The
common idea is to use the counter-example generation feature of model
checkers to produce relevant test sequences.

Model checking aims to prove certain properties of program execution
by completely analyzing its finite state model algorithmically [BE10,JM09].
Provided that the mathematically defined properties apply to all possible
states of the model, then it is proven that the model satisfies the proper-
ties. However, when a property is violated somewhere, the model checker
tries to provide a counter-example. Being the sequence of states the counter-
example leads to the situation which violates the property. A big problem
with model checking is the state explosion problem: The number of states
may grow very quickly when the program becomes more complex, increasing
the total number of possible interactions and values. Therefore, an impor-
tant part of research on model checking is state space reduction, to minimize
the time required to traverse the entire state space.

The Partial-Order Reduction (POR) method is regarded as a success-
ful method for reducing this state space [JM09]. Other methods in use are
symbolic model checking, where construction of a very large state space is
avoided by use of equivalent formulas in propositional logic, and bounded
model checking, where construction of the state space is limited to a fixed
number of steps.

A technique for test sequence generation is introduced by Kuhn et al.:
They generate event sequences for a given set of system events. They allow
specifying t-way sequences, which includes all t-events being tested in every
possible t-way order [KKL10].

14 Test Sequence Generation using Multi-agent Systems

Several researchers propose other approaches for test sequence gener-
ation. Wimmel et al. [WLPS00] propose a method of generating test se-
quences using propositional logic.

Ural [Ura92] describes four formal methods for generating test sequences
based on a finite-state machine (FSM) description. The question to be an-
swered by these test sequences is whether or not a given system implemen-
tation conforms to the FSM model of this system. Test sequences consisting
of inputs and their expected outputs are derived from the FSM model of the
system, after which the inputs can be fed to the real system implementation.
Finally, the outputs of the model and the implementation are compared.

6 Conclusion

We have successfully implemented test sequence generation for the classi-
fication tree method using a multi-agent system. The distinction between
simple walker agents and sophisticated coverage agents enables us to gen-
erate test suites with desired coverage levels. Preliminary results are al-
ready very promising. The dependency rules and generation rules turn out
to work pretty well. They offer a decent granularity to describe all desired
scenarios. Since we split actual traversal of the test problem from the rating
of possible paths, we can now easily swap in single parts, e.g. use different
guidance in the coverage agents.

For future work, we see the extension to higher n-wise coverage, com-
pletition of incomplete scenarios and a large scale set of benchmarks. As
already proposed in [KL11], we will use search based techniques as well
to evaluate effectiveness and efficiency of our approach. Next steps are the
limitation of sequence lengths and favoring of reset or travel back to start,
which is considering the cost of a reset. We will also evaluate the influence
of parameter tuning for result set sizes.

Acknowledgments. Work supported by EU grant ICT-257574 (FITTEST).

References

BE10. Dragan Bošnački and Stefan Edelkamp. Model checking software: on
some new waves and some evergreens. Int. J. Softw. Tools Technol. Transf.,
12:89–95, May 2010.

CDFY99. Mirko Conrad, Heiko Dörr, Ines Fey, and Andy Yap. Model-based Gen-
eration and Structured Representation of Test Scenarios. In Proceedings
of the Workshop on Software-Embedded Systems Testing, Gaithersburg,
Maryland, USA, 1999.

Con05. Mirko Conrad. Systematic testing of embedded automotive software-the
classification-tree method for embedded systems (CTM/ES). Perspectives
of Model-Based Testing, 2005.

Test Sequence Generation using Multi-agent Systems 15

EFW01. Ibrahim K. El-Far and James A. Whittaker. Model-Based Software Test-
ing. Encyclopedia of Software Engineering, 2001.

GG93. Matthias Grochtmann and Klaus Grimm. Classification trees for partition
testing. Softw. Test., Verif. Reliab., 3(2):63–82, 1993.

Har87. David Harel. Statecharts: a visual formalism for complex systems. Science
of Computer Programming, 8(3):231–274, 1987.

Hel07. Steffen Helke. Verifikation von Statecharts durch struktur- und eigen-
schaftserhaltende Datenabstraktion. PhD thesis, Technische Universität
Berlin, 2007.

HRV+03. Mats P.E. Heimdahl, S. Rayadurgam, Willem Visser, George Devaraj, and
Jimin Gao. Auto-generating test sequences using model checkers: A case
study. In 3rd International Worshop on Formal Approaches to Testing of
Software (FATES 2003), 2003.

JM09. Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Com-
put. Surv., 41:21:1–21:54, October 2009.

KKL10. D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. Practical combinatorial
testing. Technical report, National Institute for Standards and Technol-
ogy (NIST), October 2010.

KL11. Peter. M. Kruse and Kiran Lakhotia. Multi objective algorithms for auto-
mated generation of combinatorial test cases with the classification tree
method. In Symposium On Search Based Software Engineering (SSBSE
2011), 2011.

Luc89. Paul J. Lucas. An Object-Oriented Language System For Implementing
Concurrent, Hierarchical, Finite State Machines. PhD thesis, Graduate
College of the University of Illinois at Urbana-Champaign, 1989.

LW00. Eckard Lehmann and Joachim Wegener. Test case design by means of
the CTE XL. In Proceedings of the 8th European International Conference
on Software Testing, Analysis & Review (EuroSTAR 2000), Kopenhagen,
Denmark. Citeseer, 2000.

Mir09. Mirosamek. Two orthogonal regions (main key-
pad and numeric keypad) of a computer keyboard.
http://en.wikipedia.org/wiki/File:UML_state_machine_Fig4.png, 2009.

NL11. Changhai Nie and Hareton Leung. A survey of combinatorial testing.
ACM Comput. Surv., 43:11:1–11:29, February 2011.

Obj10. Object Management Group. OMG Unified Modeling Language (OMG
UML), Superstructure Verion 2.3, 2010.

Ura92. Hasan Ural. Formal methods for test sequence generation. Comput. Com-
mun., 15:311–325, June 1992.

WLPS00. Guido Wimmel, Heiko Loetzbeyer, Alexander Pretschner, and Oscar Slo-
tosch. Specification based test sequence generation with propositional
logic, 2000.

WP01. Alan W. Williams and Robert L. Probert. A measure for component inter-
action test coverage. In Proc. ACS/IEEE Intl. Conf. on Computer Systems
and Applications, volume 30, pages 301–311, 2001.

	Test Sequence Generation using Multi-agent Systems
	Introduction
	Design
	Implementation
	Evaluation
	Related Work
	Conclusion

