
Workshop on Software-Embedded Systems Testing (WSEST), Gaithersburg (MD), Nov. 1999

Model-based Generation and Structured Representation of
Test Scenarios

Mirko Conrad, Heiko Dörr, Ines Fey, Andy Yap

 DaimlerChrysler AG, Research and Technology
 Software Technology Research Lab

Alt-Moabit 96A, D-10559 Berlin, Germany

 {Mirko.Conrad | Heiko.Doerr | Ines.Fey | Andy.Yap}@DaimlerChrysler.com

 Abstract
 The interaction between various steps during the

development of embedded systems is currently low.
There is a large potential of cost reduction and in-
crease in quality by removing redundant development
activities. This potential is exploited by coupling mod-
eling and testing activities.

 This paper introduces a specific approach to model-
based testing. This strategy drastically reduces the
effort of testing and increases the quality of the test-
ing process. The different, partially automated steps
of testing based on Matlab/Simulink models and the
current tool support are presented. Observing that the
design of the test scenarios is the most important pre-
requisite for a trustworthy test the focus of this paper
is on the generation and structured representation of
test scenarios.

1. Introduction
 The current development of embedded software ap-

plies various techniques with low interaction. Hence,
there is a large potential to increase reliability and ef-
ficiency by integration of various techniques into a
common platform. The integration must not only be
conceptional but also implemented by using appro-
priate tools, which are acceptable on an industrial
scale. This paper addresses the integration of testing
and modeling for embedded systems. Though testing
is the most powerful technique for assuring high qual-
ity, it is time consuming. Therefore the automation of
testing is an important goal.

 Model-based testing takes advantage of the fact that
a model of any system under development captures a
lot of information which is also relevant for testing.
For instance the information on data flow or system
behavior can be used to generate test sequences.
Based on this observation, the Software Technology

Research Lab of DaimlerChrysler has developed a
pragmatic approach to model-based testing for em-
bedded systems based the classification-tree method.

 The goal of this work is first to provide a powerful tool
support and second, to integrate this tool with current
development and simulation tools such as Mat-
lab/Simulink/Stateflow, MatrixX/SystemBuild or
Statemate Magnum. A first prototype using Mat-
lab/Simulink/Stateflow /ML,SL,SF/ models has been
realized.

 Our approach to a model-based generation of test
scenarios utilizes the classification-tree method
/GG93/. This method is a specific instance of black-
box partition testing partly using and improving ideas
from the category partition method /OB88/. The clas-
sification-tree method has been used successfully in
various application fields at DaimlerChrysler. Com-
mercial tool support is available with the classifica-
tion-tree editor CTE /GGW93,ATS/. The basic idea of
the classification-tree method is to partition the input
domain of the test object separately under different
aspects. Then the different partitions are recombined
to form test cases which could be sequenced into test
scenarios. Adapting this basic idea, our approach
consists of two major steps:

1. Selecting and Structuring Test Aspects

2. Determining Test Scenarios

 Both steps are dealt with on the basis of the func-
tional specification and the interface description of the
test object. A Simulink or Stateflow subsystem block
serves as executable specification of the test object
and provides information about its interface (Figure
1).

8

step_ resp onse _

flag

7
max_ overs hoot _fla g

6

DR

5

CCS_state

4

Manip ulate d

Tor ques

3

DriverWa rnin g

2

DesiredSp eed

1

CCS_flag

3.6
m/s - > km /h

1/3.

km/h -> m/s

Desired Out Tor queS C

Desired Out Tor queDC

Tar getDa ta

SystemStat e

Desired Out Tor queCCS

CCS_state

Coor dinator

OverallR atio

Desired Out Tor queCCS

EngineSpe ed

VehicleAccele ratio n

Manip ulate dTorq ues

calcul ati on of mani pul ated
 variables,

saturati on of acc eler ation

VehicleSpee d

DesiredSp eed

step_ resp onse _flag

Watchdog2

VehicleSpee d

DesiredSp eed

max_ overs hoot _fla g

Watc hdog1

Contr olLeve r

BrakePed al

Desired Out Tor que
Driver

Desired Out Tor queCCS

VehicleSpee d

SystemStat e

DesiredSp eed Init

DesiredSp eed
Setting

DesiredSp eed
Incre ase

DesiredSp eed
Decrea se

TempomatCtrl

DesiredSp eed

V ehicleSpee d

Desired Out Tor queSC

SpeedC ontroller

DesiredS p eed dec reas e()

DesiredSp eed init()

DesiredS p eed incr ease ()

DesiredSp eed

u==a ctive

VehicleSpee d

Tar getDa ta

Distance Fact or

Desired Out Tor queDC

DriverWa rnin g

DR

DistanceC ontroll er

6

Distance Fact or

5

Contr olLeve r

4

PedalFla gs

3

Desired
Tor ques

2

Tar getDa ta

1

VehicleData

Simulink subsystem

Stateflow subsystem

 Figure 1: Executable Specification with Simulink and Stateflow Subsystems (Example)

2. Selecting and Structuring Test As-
pects

 In the first step an interface-based classification-tree
is generated semi-automatically on the basis of the
Simulink model of the test object.

 By application of the classification-tree method, the
input domain of the test object is analyzed (based on

 its functional specification) with respect to various
aspects considered to be relevant for the test. For
each aspect disjoint and complete classifications are
formed. Classes resulting from these classifications
may be further classified iteratively. The stepwise
partition of the input domain by means of classifica-
tions is represented and structured graphically by a
tree. The selection and structuring of the test aspects
is supported by the so-called ModelExtractor tool.

Simulink

User Input

Expansion
Rules

Tree
elements

Raw tree

Full tree

Data
Extraction

Determination of overall
tree structure

Completion of tree Tree to be
imported

Model

Extractor

 Figure 2: Generating Classification-Trees - Data Flow of ModelExtractor

 The ModelExtractor generates for the present a raw

classification-tree by using two sources of information
(Figure 2):

 First, the Simulink model of the subsystem under test
(particularly its input interface and its internal pa-
rameters) is analyzed systematically with respect to
relevant test aspects which are extracted as tree-

elements. The name of the test object itself forms the
root node. Input signals, elements of input busses
and internal model parameters are extracted as
classes. To preserve the structure of hierarchical in-
puts (busses), the structure of busses and vectors is
also extracted (Figure 3).

vscB_v

vscB_fahrzust
vscB_sen

asr_tAR A

asr_MF ak_ok

vscB_ant

asr_flag_MM OTEDIFF

asr_M _Mot_soll_alt

asr_flag_MM OTAerneut

asr_flag_sl

asr_flag_StartMMOT A

asr_flag_minMsoll

asr_MM OTA

MMOTA

System model
(e.g. Simulink/Stateflow)

Semi-automatic generated
Classification-Tree (CTE/ES)

2

asr_ MMO TA

1

asr_fl ag_ minMs oll

-K-

vscP_rdyn

-K-

vscP_m_ Fzg

ref_v _Fz g[1]

select_vscB _v

vse_ax _ff[1]

 vse_a y_ff[1]

select_vscB _sen

faz_F _luft[1]

 faz_ F_r oll[1]

 faz _du m3[1]

 faz _du m4[1]

select_vscB _fah rzust

ant_ M_M ot_ Fah[1]

select_vscB _ant

-K-

asrP_M MO TA_tARA

Sum3

Schalter

max

Max

MMO TA3

asr_ M_Mot_s oll_alt

asr_fla g_Sta rtM MO TA

MMO TA4

asr_fla g_minMs oll

MIN_M_M ot_soll _alt

MMO TA2

vse_ay _ff

ant_ M_M ot_Fah

asr_fla g_ MMO TEDIFF

MMO TA3

MIN_M_M ot_ Fah

asr_flag_ MMO TAer neut

asr_flag_sl

ref_v _Fz g

MBREein

MBRE

MBRE

0

0

|u|

|u|

6.4

2ter_ Gang_fu er_ MBRE

11

asr_fl ag_Sta rtM MO TA

10

asr_fl ag_sl

9

asr_fl ag_ MMO TAer neut 8

asr_M_M ot_s oll_alt

7

asr_fl ag_MMO TEDIF F

6

vscB_ant

5

asr_ MFa k_ok

4

asr_tARA

3

vscB_sen

2

vscB_fah rzust

1

vscB_v

MMO TA1MMO TA0

MMO TA_mi n

2

asr_MMO TA

1

asr_fl ag_ minMs oll

-K-

vscP_rdyn

-K-

vscP_m_Fzg

ref_v _Fz g[1]

select_vscB _v

vse_ax _ff[1]

 vse_a y_ff[1]

select_vscB _sen

faz_F _luft[1]

 faz_ F_r oll[1]

 faz _du m3[1]

 faz _du m4[1]

select_vscB _fahrzust

ant_ M_M ot_ Fah[1]

select_vscB _ant

-K-

asrP_MMO TA_tARA

Sum3

Schalter

max

Max

MMO TA3

asr_M_M ot_s oll_alt

asr_fla g_Sta rtM MO TA

MMO TA4

asr_fla g_ minMs oll

MIN_M _M ot_soll _alt

MMO TA2

vse_ay _ff

ant_ M_M ot_ Fah

asr_flag_ MMO TEDIF F

MMO TA3

MIN_M _M ot_ Fah

asr_fla g_ MMO TAer neut

asr_fla g_sl

ref_v _Fz g

MBREein

MBRE

MBRE

0

0

|u|

|u|

6.4

2ter_Gan g_fuer_ MBRE

11

asr_fl ag_Sta rtM MO TA

10

asr_fl ag_sl

9

asr_fl ag_ MMO TAer neut 8

asr_ M_Mot_s oll_alt

7

asr_fl ag_ MMO TEDIF F

6

vscB_ant

5

asr_ MFa k_ok

4

asr_tARA

3

vscB_sen

2

vscB_fahrzust

1

vscB_v

MMO TA1MMO TA0

MMO TA_mi n

Simulink
Subsystem

 Figure 3: Generating Classification-Trees - Data Extraction from Simulink

 Second, the overall tree structure can be predefined
by the tester in a special GUI. Based on these user
preferences additional nodes are inserted for struc-
turing the classification-tree, thus improving the read-
ability and allowing an adaptation to domain-specific
constraints (Figure 4).

 The generated tree elements, describing the input
data space of the model, and the user defined tree
elements for structuring the tree are processed by the
ModelExtractor which fully automatically outputs a
first instance of a classification-tree called raw tree.

MMOTA

vscB_fahrzust para_075

Inputs

Additional structuring of
the Classification-Tree

Parameters

asr_flag_
MMOTEDIFF

 Figure 4: Generating Classification-Trees - Determination of Overall Tree Structure

After that, the raw tree generated by the ModelEx-
tractor will be expanded according to tree-
transformation rules (Figure 2). The application of
these rules, which are stored in an experience base,
adds e.g. useful standard classes for recurrent classi-
fications or even entire sub-trees. Figure 5 shows an

example for a transformation rule and its application
to the raw tree. The automated, rule-based expansion
enables the user to share the knowledge of experi-
enced testers and to concentrate on non-routine ac-
tivities

“Add to each classification
 representing an boolean-type

 input signal two classes
 labeled true and false.”

MMOTA

vscB_fahrzust para_075

Inputs

Adding classes

Parameters

asr_flag_
MMOTEDIFFTree-transformation rules

falsetrue

 Figure 5: Generating Classification-Trees - Rule Based Expansion (Example)

The expanded classification-tree may be imported
into an extended classification-tree editor, called CTE
for embedded systems or short CTE/ES. Either a fully
automatic import of the entire tree or a flexible semi-
automatic import of sub-trees or single nodes, which
may be edited further by the user, is possible (Figure
6).

 The automated generation of classification-trees from
the technical interface of the test object was sug-
gested for a long time, an experimental tool employ-
ing artificial intelligence techniques was already con-
structed in 1993 /GG93/. Later, concepts for the clas-

sification-tree construction based on particular speci-
fication notations were developed (e.g. for Z specifi-
cations /SCS97/ and prototypically realized /Wei97/.

 Since the model-based development of embedded
software supported by powerful modeling tools as
Matlab/Simulink/Stateflow became available, the inte-
gration of such technologies in the industrial devel-
opment engineering process is possible. Further-
more, development engineers accept the approach
because information required for generating the clas-
sification-trees evolve within the normal development
procedure and do not need to be entered twice.

CTE/ES

V 1.0

Import-
Window

Import-
Window

 Figure 6: Classification-Tree Editor CTE/ES with Import Interface

3. Determining Test Scenarios
 Testing the behavioral properties of the unit under

test requires the determination of test scenarios.
Their systematic determination forms the second
major step of our approach.

 Each scenario captures a particular behavior of the
environment which should be presented to the unit
under test and, hence, describes – largely independ-
ent from concrete data – what is to be tested. In the
execution of the specific test the environment must
exhibit the respective behavior and drive the unit un-
der test.

 To represent test scenarios in an abstract way, they
are decomposed into individual test steps. Each test
step defines the input situation at a certain time. A
sequence of such test steps is called test sequence.

 The terminology for the description of test steps and
test sequences is provided by the classification-tree.

The tree is used as head of the so-called combination
table (Figure 7). Whereas the classification-tree is a
systematic description of aspects relevant to the test,
the combination table is used for the representation of
the hierarchical test sequences.

�����������
&ODVVLILFDWLRQ�7UHH�(GLWRU

IRU

(PEHGGHG�6\VWHPV

Modeling of
temporal aspects
or linear path data

Hierarchical
test sequences Abstract description of

continuous signal
sequences

 Figure 7: Determination of test scenarios and description of test sequences in the CTE/ES

 Since each test sequence corresponds to a run of

the test object, the tester has on one hand to de-
fine input situations for selected points in time and
on the other hand to describe the type of signal
course in between in order to describe this run in
an abstract way.

 The input situation for each test step is defined by
combining classes of different classifications of the
classification-tree. This is done by marking the ap-
propriate tree elements in the combination table.

 This leads to a series of stimuli, which may still be
activated at any time during the test. For the defi-
nition of a test scenario the stimuli must be orde-
red and their duration must be specified.

 Therefore, the duration of each input situation can
be captured by the annotation of time indications
at the rightmost column of the combination table
(Figure 8). So, settling times of a controller spent
in a test step can be taken into account.

 S te p1.1:

 S te p1.3:

 T es tS eq ue nc e1:

 S te p1.2:

 0 .0

 t [m s]

 1 .2

 1 .3

 Figure 8: Description of Test Sequences - Annotated Time Indications (Example)

 Signal courses are represented by arrows which
connect the marks of successive steps in the
combination table. A fixed number of course types
like step, ramp, and spline is predefined within the
CTE/ES. By default the transition between two test

steps is performed as a step function. All other
types are represented by specific arrow types
(Figure 9). This enables a clear graphical differen-
tiation of the transition types. Hereby, discrete as
well as continuous signals may be modeled.

Arrow types indicate types
of signal courses

TestSequence 1:

Step1.1

Step1.3

Step1.2

Step1.1 Step1.2 Step1.3

 Figure 9: Description of Test Sequences - Types of Signal Courses in the Combination Table

4. Further Test Steps
 The test sequences are the input for the subse-

quent steps of the model based testing approach:
With the help of an export function, requirements
for the test data description are extracted from the
CTE/ES and provided to the simulation tool. Within

a graphical test data editor input signal sequences
are defined concretely for the simulation of the test
object and test drivers with stimuli and evaluation
blocks are automatically generated. During the test
of the model they stimulate the model directly in
the simulation environment with the defined input
signals (Figure 10).

 sys_aktiv [1=EIN, 0 =AUS]

ay [m/ss]

v [km/h]

Simulation Time

ay

v
sys_aktiv

Initialisierung

Visualization
v [km/h]

ay [m /ss]

TestSeq2:
SystemAktiv

v [km/h]

ay [m/ss]

TestSeq1:
SystemInaktiv

 35.07

 0.90

 0.00

 40.00

TestData and TestResults

CTE/ESCTE/ES

SimulationTime

Sequence
Selection

ActivateSystem

Meßrauschen

2
ay [m/ss]

1
v [km/h]

40
Sequenzdauer [s]

STOP

Stop Simulation

>=

Look-Up Table
v [km/h]

Look-Up Table
ay [m/ss]

Clock

Test harness for
model test

(Matlab/Simulink)

Test harness for
model test

(Matlab/Simulink)

ActivateSystem

Geschwindigkeit v [km/h] Querbeschleunigung a [m/ss]

0 0 <v<20 20 20<v<3030 >30 0 0<ay<1 1 >1
TestSeq1: SystemInaktiv

1.2: Beschleunigung (x-Richtg.)

1.1: Verharren im Ruhezustand

1.3: Verharren

1.4: Beschleunigung (y-Richtg.)

1.5: Verharren

1.6: Beschleunigung (x-Richtg.)

1.7: Verzögerung (y-Richtg.)

1.8: Beschleunigung (x-Richtg.)

TestSeq2: SystemAktiv

TestSeq3: Notabschaltg.

2.1: . . .

3.1: . . .

Dauer

> 5s

0 .. 1 s

Abstract description of
test scenarios (CTE/ES)

Abstract description of
test scenarios (CTE/ES)

 Figure 10: Further Steps in Model-based Testing - From Abstract Description of Test Scenarios to Generation of
Test Harnesses

5. Summary
 The approach to model-based testing described

here shows how information introduced in a de-
velopment process can be reused by subsequent
activities for the special case of modeling and
testing.

 This approach has two main advantages. First,
reuse of information reduces development time
and costs. Information already available must not
be reentered into further tools but the information
is exchanged between tools. Second, the quality of
the overall process increases. No typos or more
severe inconsistencies between modeling and
testing will weaken the quality assurance. Testing

will check whether the unit under test respects
precisely the requirements indicated by the model.

References
 /ML/ ’Using Matlab Version 5’. The MathWorks

Inc., Natick, MA, (1999)

 /SL/ ’Using Simulink Version 3’. The MathWorks
Inc., Natick, MA, (1999)

 /SF/ ’Stateflow User’s Guide Version 2’. The
MathWorks Inc., Natick, MA, (1999)

 /GG93/ Grochtmann, M. and Grimm, K. ’Classifi-
cation Trees for Partition Testing’. Software Test-
ing, Verification and Reliability, 3, 63-82 (1993)

 /OB88/ Ostrand, T. and Balcer, M.: ’The category-
partition method for specifying and generating
functional tests’. Communications of the ACM,
31(6), 676-686 (1988)

 /GGW93/ Grochtmann, M., Grimm, K., and Wege-
ner, J.: ’Tool-Supported Test Case Design for
Black-Box Testing by Means of the Classification-
Tree Editor’. Proc. of 1st European Int. Conf. on
Software Testing, Analysis and Review (Eu-
roSTAR ’93), London, UK, pp. 169-176 (1993)

 /ATS/ ATS Software Research & Consulting
GmbH, Schwartzkopffstr. 6, 10115 Berlin, Ger-
many,
http://www.ats-berlin.de

 /SCS97/ Singh, H., Conrad, M., and Sadeghipour,
S.: ’Test Case Design Based on Z and the Classi-
fication-Tree Method’. Proc. of 1st IEEE Int. Con-
ference on Formal Engineering Methods
(ICFEM’97), IEEE Press (1997)

 /Wei97/ Weiß, T. 'Testfallgenerierung auf der
Basis von Z-Spezifikationen mit Hilfe der Klassifi-
kationsbaum-Methode' (in german). Diploma the-
sis, Technical University Berlin (1997)

