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Executable graphical models are used throughout the model-based development process for em-
bedded controls. The test process accompanying model-based development can profit from the ex-
istence of such executable models in various ways. For instance, in addition to traditional code cov-
erage analysis the executable model can also be subjected to structural coverage metrics on model
level. This paper gives the details and results of our experience with the deployment of model cov-
erage metrics and the application of test vector generators and coverage analyzers.

���������������
Automotive manufacturers’ and suppliers’ need to reduce development times and costs has resulted
in a paradigm shift toward the model-based development of software embedded in automotive
electronic control units (ECUs). This means that executable models, designed with popular graphi-
cal modeling languages, are used throughout the development process. These models then form the
’blueprint’ for the automatic or manual coding of the ECU software.
The test process accompanying model-based development (model-based testing) can profit from the
existence of such executable models in many ways. The executable model can already be simu-
lated, tested and analyzed by the development engineer. As a result, errors can be detected at an
early stage and eliminated at low cost. Since the executable models could and should be exploited
as an additional, comprehensive source of information for testing, model-based development allows
and, at the same time, requires new approaches to software testing. One of various ways in which
the test process can profit from the existence of such executable models is the possibility of apply-
ing structural coverage criteria not only at code level but also at model level.
The determination of structural coverage metrics at code level (code coverage) as a part of the test
process is considered to be best practice in industrial software development and is required by
many development standards (see e.g. [13]). By using coverage criteria at model level the known
benefits of structural coverage, namely controlling the test depth and detecting coverage holes in
given test suites [23] [27] [12] [10], can be exploited in an early stage of software development.
Consequently, the effectiveness and quality of testing can be measured as early as executable mod-
els are available.
Coverage metrics at code level can be control flow or data flow oriented. The coverage is measured
with respect to certain program elements which are executed during the test. For instance, in the
case of branch coverage these are program branches. In contrast, structural coverage metrics at
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model level (model coverage) are, at best, currently being pilot tested [10]. Here, the number of
model elements covered by the test is related to the total number of these elements. In the case of
state coverage for Stateflow diagrams, such elements are then, for instance, Stateflow states.
A structural coverage metric can be utilized in two different ways: Firstly, it can be used as a test
adequacy criterion, i.e. to decide whether a given test set is complete or adequate with respect to
that criterion (acceptor for black-box tests). Secondly, it can be an explicit specification for test
case or test sequence selection. It then plays the role of a test selection criterion (generator for
white-box tests) [27].
To be beneficial to a real software development process, which may involve software with thou-
sands of lines of code or models with thousands of blocks or states, a coverage metric must be suit-
able for automated collection and analysis [23]. Since structural metrics based on control flow are
most suitable for automated collection and analysis [23], we will limit the scope of the paper to
these types of metrics. Moreover, we will limit our scope to Simulink / Stateflow [25] [22] and C,
because they are the most popular graphical modeling and programming languages respectively for
embedded automotive software.
Tool support for use as test adequacy criteria is provided by coverage analyzers. Control flow based
C code coverage analyzers exist for years and are quite common [18]. In contrast, model coverage
analyzers for Simulink / Stateflow models have only become available to a broader circle of users
since the year 2000. These tools now comprise the Simulink / Stateflow Model Coverage Tool [16],
Reactis Tester [20], and Beacon Tester [4].
To support the application of coverage metrics as test selection criteria, test input generators are
indispensable. Due to internal system states only repeated, sequential calls of the test object can
reach a high structural coverage of embedded control software. Therefore, it is often not sufficient
to generate test vectors for a single call of the test object. Instead, sequences of such test vectors
(test sequences) have to be generated [2]. The respective tools are referred to as test vector / test
sequence generators in the following. They enable an automatic generation of test suites with a high
degree of either model or code coverage [20] [26]. From the tester’s point of view, the automatic
generation of test vectors / test sequences saves a large amount of time. The tester can concentrate
on analyzing the correctness of the test results – a task which cannot be accomplished by the gen-
erators.
Only limited experience has been gained in the use of model coverage. Experience with the use of
coverage metrics for Simulink /Stateflow models as well as with the application of model coverage
analyzers and test vector / test sequence generators is very rare. A few exceptions known to the
authors comprise [1], [10] and [2].
For this reason, the authors have carried out some experiments concerning the deployment of cov-
erage metrics for Simulink / Stateflow models as part of model-based testing. The following ques-
tions were of central importance:
♦ Which possible applications exist for model coverage measurements within the context of

model-based development?
♦ Which correlation exists between structural model and code coverage criteria?
♦ Can model coverage metrics supplement or, in part, replace the measurement of code coverage?
♦ How can model coverage analyzers and test vector / test sequence generators be used to im-

prove model-based testing?
The remainder of the paper is structured as follows: Section 2 introduces structural coverage crite-
ria at model and code level. Section 3 describes the procedure and the results of the experiments
mentioned above. Section 4 analyzes the experimental results, and section 5 summarizes the previ-
ous sections and introduces a model-based test strategy.
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In the context of model-based development two kinds of structure can be seen as a structural cover-
age measure for testing software. On the one hand, the coverage of the model structures can be con-
sidered, on the other hand, coverage metrics can be determined for the source code structures.
Both coverage at code as well as at model level can be considered to be instances of a more general
concept of structural coverage. The determination of structural coverage in order to control the test
depth or test end is based on the assumption that test coverage rises as the number of tests in-
creases, in so far as the test coverage is not yet complete and the newly added tests do not repeat
tests already existing. The definition of new tests aims at covering structural elements which have
not yet been tested by the existing tests. This selection metric leads to a more focused and efficient
test process (in comparison to the random test). The attainment of a certain amount of structural
coverage is, in practice, often used as a necessary, but not adequate, test termination criterion.
100% structural coverage can usually not be attained in practice, as a certain portion of the struc-
tural units is not executed during the program run. This portion, however, is negligible (see [15],
[9]). The following sections describe the structural coverage measurements at model and code level
used during the experimental investigations made by the authors.

����������	�
�������
������
There are no general model coverage criteria known and the few available model coverage tools are
presently being introduced into industrial praxis. The Model Coverage Tool [16], utilizable since
the availability of Matlab R12 in 2000, allows the determination of different coverage criteria for
Simulink / Stateflow models during the model test. The authors also used the test vector / test se-
quence generator tool Reactis Tester in their experiments. This tool generates test sequences for
Simulink / Stateflow models and has been available since 2002.
Most of the coverage metrics provided by the Model Coverage Tool and Reactis Tester tend to be
control flow oriented. Those of them which have been used in the experiments presented in this
paper, are described below.

������������	
����	�������		�����	��������������
The coverage metrics provided by the Model Coverage Tool used in our experiments are decision
coverage (D1) and condition coverage (C1).
���������	�
����� ����� In order to determine decision coverage (D1), the execution of blocks,
which serve as decision points, is analyzed. The number of possibly and actually executed alterna-
tives is calculated for each decision point. For the determination of decision coverage with Matlab
R12.1, Switch, Abs, Logic and While blocks, triggered / enabled subsystems, as well as Stateflow
states and transitions are drawn upon. Figure 1 shows, as an example, the different pathways
through a Switch block and lists the test goals which have to be reached in order to achieve full
coverage.

path A

path B

Pass through In1 when
control ≥ threshold;
otherwise, pass through In2

Switch

 control

In 1

In 2

test goal

1 (path A)

2 (path B)

test input specification

control ≥ threshold

control < threshold

Figure 1.  Decision coverage on model level - pathways through a Switch block and test goals

Note that the decision coverage is a control flow related metric, and the acronym D1 for this cover-
age metric does not correspond to the naming convention used for code coverage criteria mentioned



4

in section 2.2. In order to avoid confusion, the coverage metrics referred to in the tables of section 3
have the prefix “M_” for model and the prefix “C_” for code coverage.
	���������	�
������	��� In order to determine condition coverage (C1) the coverage of the logical
predicates is analyzed for logical Simulink blocks (e.g. Logic blocks, Combinatorial Logic blocks)
and Stateflow transitions. A test achieves 100% C1 coverage at model level when each logical
block and each Stateflow transition have been evaluated as ���� and as ����� at least once.

������������������������	��������������
Reactis Tester’s coverage criteria are rather tool-specific and have been defined separately based on
Simulink and Stateflow. The coverage metrics used in our experiments are branch coverage for
Simulink as well as state coverage and condition action coverage for Stateflow [20].
�������	�
����� The branch coverage metric considers a block with conditional behavior covered
if all conditional behavior has been exercised at least once. Blocks considered for this purpose are:
Dead Zone, Logical Operator, MinMax, Multiport Switch, Relational Operator, Saturation, and
Switch.
������	�
����� This metric tracks which states have been entered at least once.
	����������������	�
����� This metric tracks which transition segments have had their condition
actions executed at least once. If a segment has no condition action, then the segment is considered
covered when its condition has evaluated to true at least once.

����������
�������
������
Coverage measurements at code level can be control or data flow oriented.
Typical control flow oriented code coverage metrics are statement, branch and path coverage.
These coverage criteria define which program path, statements or conditions have to be executed in
order to achieve full coverage of the software under test. The different methods of control flow re-
lated testing differ in the definition of the nature and frequency of the execution of paths or pro-
gram constructs.
Data flow related test procedures define the corresponding criteria using the access to information
structures contained in the program sequence, for example variables, fields and lists. The idea be-
hind data flow oriented testing is to check the interaction between value assigning and value using
statements. Differences between the individual methods arise in the part of the data flow interac-
tions which has to be executed in order to achieve complete coverage.
Whilst the use of control flow related coverage criteria (Cx) at code level is widespread in practice,
data flow related coverage measurements (Dx) are used less often due to their difficult automation.
Prevalent control flow oriented coverage measurements are statement coverage (C0), branch cover-
age (C1), path coverage (C4) and different variations of condition coverage [17]. The individual
coverage criteria are partially ordered. For instance, the branch coverage encloses statement cover-
age (see e.g. [11]).
In the experiments we limited our scope to C0 and C1 code coverage, because these metrics were
supported by the deployed tools and were comparable to the model coverage metrics used.
������������
������	��. During the statement test, the aim is to test the test object in such a way
that each of its statements is executed at least once [17]. The statement coverage metric relates the
number of statements executed during the test to the number of executable statements in the pro-
gram code.
���������
������	��. The aim of the branch test is to run through each program branch of the test
object at least once. Here, a program branch is roughly defined as a possible route from the pro-
gram start, or from a branching of the control structure, to the next control structure or program
end. The branch coverage metric is defined as the ratio of the branches run through to the total
number of branches present in the source code [11]. Figure 2 shows, as an example, the different
branches emerging from an If-statement and lists the test goals which have to be reached in order to
achieve full coverage.
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test goal

1 (path A)

2 (path B)

test input specification

control ≥ threshold

control < threshold

Out  =  In1; Out  =  In2;

path A path B

if ( control ≥ threshold ) {
    Out = In1;
} else {
    Out = In2;
} 

Figure 2. Branch coverage on code level – control flow graph and test goals

�����	��� ����
�	�����������������
��
The objective of the experiments was to determine the applicability of the model coverage metrics,
their relationship to the code coverage metrics and to assess the usability of test vector / test se-
quence generators on both model and code level.

���������		����
����������������
��
The tests were carried out at both model level and code level. The test objects comprised three dif-
ferent modules (subsystems) of a Simulink / Stateflow modeled automotive body control system of
real size and complexity (Enable_A, Enable_S, and Ctrl_S). Enable_A and Enable_S contained
both Simulink as well as Stateflow portions, Ctrl_S contained Simulink portions exclusively.
Table 1 shows selected complexity measures of the Simulink / Stateflow models tested. The meas-
ures concern general as well as coverage-specific features.

Table 1.  Information on the complexity of the Simulink / Stateflow models used as test objects

Test
object

Size
in KB

Blocks Sub-
systems

Inputs State-
flows

Stateflow
states

Stateflow
transitions

Switch
blocks

Relational
operators

Logic
blocks

Ctrl_S 126 175 4 28 0 0 0 3 9 25
Enable_S 293 214 11 15 3 13 30 5 5 11
Enable_A 201 154 7 11 3 11 20 3 5 6

The test objects were subjected to a model test. Existing black-box test scenarios were taken as a
basis from which test data were gained in the form of signal waveform over time. In total, 36 black-
box test scenarios with an average length of 11 sec. were included in the investigations. During the
model test, decision and condition coverage were determined with the Model Coverage Tool from
Matlab R12.1.

code generator
• TargetLink

Simulink / 
Stateflow 

model

C code

model coverage analyzer

• Model Coverage Tool
• Reactis Tester

code coverage analyzer

• TESSY

initial test suite

test vector / test sequence generator
• Reactis Tester

test vector / test sequence generator
• ET tool

additional tests

additional tests

Figure 3. Experimental procedure
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Further, aiming at maximum model coverage, test data were automatically generated by Reactis
Tester [20]. The coverage reached by the generated test data was then compared with the coverage
reached by the black-box test.
Following the model test, floating-point C code was created for the test objects with the aid of the
code generator TargetLink [24]. Consequently, the behavior of the test objects on model and code
level was equivalent. The test data from the model test served as stimuli for the renewed test exe-
cution (code test) with the aid of the test system TESSY [18]. The statement and branch coverage at
code level (C_C0 and C_C1) were thus determined. As on model level, test data aiming at maxi-
mum code coverage were automatically generated by the evolutionary testing tool ET [26], and the
code coverage reached was compared with the coverage reached by the black-box test. Figure 3
illustrates the experimental procedure.

������������������	����
����
������
Table 2 summarizes the experimentally determined coverage of the three test objects at model and
code level. For each module it contains the sum of the coverage attained with the black-box tests.
The model coverage was measured with the Model Coverage Tool and the code coverage by
TESSY using the same data. The coverage criteria used on model level are decision coverage
(M_D1) and condition coverage (M_C1), and those used on code level are statement coverage
(C_C0) and branch coverage (C_C1). Table 2 also shows the coverage measured by Reactis Tester
using the test data of black-box tests. The relevant coverage criteria of Reactis Tester are branch
coverage (shown as M_Branch), state coverage (shown as M_State) and condition action coverage
(shown as M_CondAct).

Table 2. Model coverage reached by the black-box test;
coverage measured by Reactis Tester and TESSY with the same data

�����	����� ���� �	
����	�����
������	
����	�������		�����

�	
����	�����
�����������������������

�	
���	�����
��������������

� !� � �� � "��#�� � ����� � �	#
$�� � �% � ��
Ctrl_S Σ black-box �%% &' 70 n.a. n.a. 100 100
Enable_S Σ black-box (( () 95 80 72 88 89
Enable_A Σ black-box )* && 91 80 21 61 58

������������
��������
�����������������
��������������������	�
������
Reactis Tester automatically generates test sequences in the form of signal waveforms over time in
order to reach maximum coverage of model structures. The test data generation procedure is di-
vided into two stages: random and targeted. During the targeted phase the tool tries to ’guess’ good
inputs that will put the model into states which increase the coverage degree. Details of the algo-
rithms used by Reactis Tester have not been published.
The generation of test data by Reactis Tester depends on some parameters such as the maximum
number and steps of generated test sequences, test sequences to be preloaded, how long the probes
are initially, how often it should try extending a probe before giving up, etc.

+�+���!�������	,��-.���/�#��
Table 3 shows the best model coverage reached by Reactis Tester after executing several tests with
different test generation parameter values. Table 3 also shows the model coverage measured with
the Model Coverage tool as well as the code coverage measured with TESSY using the same test
data generated by Reactis Tester. The tests with the Model Coverage Tool and TESSY were ac-
complished in order to be able to compare the tool-specific coverage reached by Reactis Tester with
the more general coverage criteria used by Model Coverage Tool as well as with the standard cov-
erage criteria on code level.
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Table 3. Best model coverage reached by Reactis Tester;
 coverage measured by Model Coverage Tool and TESSY with the same data

�����	����� ���� �	
����	�����
������	
����	�������		�����

�	
����	�����
�����������������������

�	
���	�����
��������������

� !� � �� � "��#�� � ����� � �	#
$�� � �% � ��
Ctrl_S ’best’ white-box 100 80 (� #�� #��� 100 100
Enable_S ’best’ white-box 94 96 �%% �%% '0 98 93
Enable_A ’best’ white-box 87 91 �%% �%% () 87 85

Table 4. Number of test goals to be covered and number of test steps probed by Reactis Tester

�����	����� 12/����	,�������	���
� "��#�� � ����� � �	#
$��

12/����	,
��������.�

Ctrl_S 74 n.a n.a. 20500
Enable_S 78 13 58 20500
Enable_A 46 11 39 20500

By comparing Table 2 and Table 3 it can be seen that the M_D1 and M_C1 model coverage as well
as the C_C0 and C_C1 code coverage of Enable_A and Enable_S increased by generating test data
automatically. Due to the high coverage of Ctrl_S reached during the black-box tests an optimiza-
tion was only achieved for C1 model coverage (condition coverage M_C1). Table 4 shows the
number of test goals (Simulink branches, Stateflow states and condition actions) to be covered and
the number of whole test steps that has been probed by Reactis Tester.

�� ���������
��������
�����������������
����������������
����
������
Evolutionary Testing is an innovative technique for automating software tests by using metaheuris-
tic search methods. One of the main application areas is the automatic generation of test suites
which achieve full structural coverage (evolutionary structural testing).

+�*����"���,��#��	
2���	#��	��	�2��	#��3����2��2���������#�
Evolutionary algorithms (EA) have been used to search for data for a wide range of applications.
EA is an iterative search procedure using different operators to copy the behavior of biologic evo-
lution. When using EA for a search problem it is necessary to define the search space and the fit-
ness function. The algorithms are implemented in GEATbx, a widely used tool box [19].
Evolutionary testing uses EA to generate test vectors / test sequences automatically. In the case of
evolutionary structural testing, the goal is to find a test suite which achieves full structural coverage
for a given coverage criteria.
The general idea is a separation of the test into test goals and the use of EA to search for test data
fulfilling the test goals. Each partial goal represents a set of program elements to be executed in
order to achieve full coverage of the structural test metric selected, i.e. each single statement repre-
sents a partial goal when using statement coverage (C_C0) on code level. The definition of a fitness
function, that represents the test goal accurately and supports the guidance of the search, is a pre-
requisite for the successful evolutionary test.
For evolutionary algorithms, an encoding of the individuals generated (mapped to test vectors) has
to be defined. In order to address the requirement for generating sequences of test inputs the authors
selected an approach which generates input sequences as a list of separate input elements. The
length of this list is not defined in the test object and is, in general, not limited for control systems.
A straightforward approach is to specify an upper bound to the length of the input sequences manu-
ally. A search space is formed with the information on the sequence length by replicating all the
input parameters in such a way that a separate value is provided for each call and each parameter.
Every individual generated by the EA represents the data of one sequence of calls of the test object.
The fitness function which is decisive for successful optimization, is based on static control flow
information as well as dynamic data monitored during the test execution. There are different ways
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of evaluating the monitoring data and transforming them into a fitness value. One of the basic ideas
is to determine the distance in the executed conditions of the software tested. In this way the search
is directed with information on incorrectly evaluated conditions. The optimal solution of the search
is the execution of the test goal. Details of the optimization approach used here can be found in
[14], [21] and [26].

+�*����!�������	,��-.���/�#��
The experiments were performed with an extended version of the automatic structural test system
ET. The GEATbx [19] is the optimization component used by the system. The authors applied the
standard settings for this class of problem (namely, 6 subpopulations with 50 individuals each, lin-
ear ranking, a selection pressure of 1.7, migration and competition between subpopulations). A real
valued representation is used. The subpopulations employ different search strategies by using dif-
ferent settings for recombination (discrete and line recombination) and mutation operator (real val-
ued mutation with differently sized mutation steps – large, medium and small).
The C code generated from the three Simulink / Stateflow moduls Ctrl_S, Enable_S and Enable_A
was tested using the extended ET system. Table 5 provides an overview of the complexity meas-
ures for the test objects on the code level. The test object 	����� is relatively small but is generated
from a state diagram containing flags in all conditions.

Table 5. Information on the complexity of the test objects

Test object Size LOC Nodes param. if–then conditions nesting level
Ctrl_S 16kB 220 20 28 5 6 2
Enable_S 54kB 800 140 15 51 70 10
Enable_A 44kB 520 86 11 39 56 8

Table 6 summarizes the coverage achieved for the three test objects by the test sequences generated
using the ET system. The coverage degrees reached by the same data on model level, measured
using the Model Coverage Tool and Reactis Tester, are also shown in Table 6.
The number of test goals (statements and branches contained in program code) to be covered and
the number of individuals (test vectors) generated by the ET system are shown in Table 7.

Table 6. Code coverage reached by the ET system;
 coverage measured by Reactis Tester and the Model Coverage Tool with the same data

�����	����� ���� �	
����	�����
������	
����	�������		�����

�	
����	�����
�����������������������

�	
���	�����
���������3���/����

� !� � �� � "��#�� � ����� � �	#
$�� � �% � ��
Ctrl_S Σ white-box 88 54 61 n.a. n.a. ') '�
Enable_S Σ white-box 97 98 99 100 93 '' '(
Enable_A Σ white-box 82 95 100 100 67 ') '�

Table 7. Number of test goals to be covered and number of individuals generated by the ET system

�����	����� 12/����	,�������	���
� �% � ��

12/����	,��#
��
2���

Ctrl_S 17 23 650000
Enable_S 135 196 550000
Enable_A 87 126 495000

By comparing Table 2 and Table 6 it can be seen that the M_D1 and M_C1 model coverage as well
as the C_C0 and C_C1 code coverage of Enable_A and Enable_S reached during black-box tests
increased using test sequences generated by the ET system.
Only a few of the test goals not reached are a sequence test-specific problem. Some of them refer to
the problem of unreachable code created by the code generator and some to the problem of per-
forming an evolutionary test with flag conditions. In the next paragraphs we will give a short over-
view of the reasons why certain test goals were not reached.
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	������
������������������������� ����!	�����"� All the program’s conditional statements use flags
that have been assigned previously. This is an area of research [3]. Some conditions access flags
that have been assigned in previous calls of the function. No test data could be found that executes
a special statement and the corresponding two branches. The problem of finding a solution has been
traced to a search which performs poorly in the case of the corresponding flag condition.
	������
�������������� ���� ������� ���� !#�������"� The automatic testing of this module demon-
strates the potential of the evolutionary testing approach. The test object consists of 800 lines of
code leading to 135 control flow nodes, leading to 196 branches.
During the statement coverage test only one statement was not executed. The non-executable
statements and branches appear when using current versions of code generators. A constant condi-
tion leads to a non executable statement.
The performance of the branch coverage test was more challenging, resulting in coverage of 98%.
Only five branches were not traversed. Upon checking the code we found that two branches belong
to the non-executable statement. One branch is not executable because the associated condition
cannot be evaluated as �����. The ET system was not able to find an input for two conditions which
depend on sequential calls of the function. This is due to the high nesting level of the conditions to
be fulfilled. At the moment it is not possible to guide the search to a solution without more data
flow information. This would require further research.
	������
�������������� ���� ������� ���� !#�������"� This module is not particularly complex with
regard to metrics, however, it contains some program structures that are difficult to test. First of all,
the code is state oriented and many conditions depend on the settings of state variables. The func-
tion has a high nesting level of ��$����$���� statements and employs a state encoded using a set of
flags. Again, the test object contained unfeasible code because of the use of library templates (three
statements). Two other statements were not covered because of the flags used in the conditions. The
results of branch coverage are similar to those of statement coverage. The test case set found did
not cover 4 branches starting at flag conditions and 6 branches are placed at unreachable code. One
branch could not be traversed because a precondition had not been satisfied. This branch requires
an input sequence assigning two variables in previous calls of the function. The approach does not
find a solution for this.

!�����
������"�������	��� ����
�����
��

 ��������	����
����
��������������!��"��	
#$��%������
Although information can be found on code coverage attained with black-box tests in the relevant
literature (see [9] and [5]), we are not aware of corresponding data for attainable model coverage.
The C_C1 code coverage (branch coverage) degrees of 58, 89 or 100% (Table 2) determined in the
experiments, accumulated during the black-box test, lie within or above the bandwidth (40-60%)
specified in [15], but, apart from Ctrl_S, below the coverage required by [5] (90%). The model
coverage reached with black-box tests (Table 2) fluctuates between 54% and 100% for M_D1 (de-
cision coverage) and between 66% and 85% for M_C1 model coverage (condition coverage) and,
thus, lies in a comparable order of magnitude. The coverage reached by test vector / test sequence
generators, both on model and code level, is higher than that reached by black-box tests and almost
satisfies the 90% coverage required by [5]. As Table 3 shows, the model coverage reached with the
test sequences generated by Reactis Tester lies between 87% and 100% for M_D1 and between
80% and 91% for M_C1 model coverage. According to Table 6 the code coverage reached with the
test sequences generated by the ET system varies between 91% and 98% for C_C1 code coverage.

 ������������������
�������������������������	�	���	
Whilst the code coverage criteria generally used are defined tool-independently and are applicable
to various imperative programming languages of the 3rd generation, we consider that the coverage
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measurements determinable with the Model Coverage Tool and Reactis Tester should rather be
interpreted tool-specifically. The arguments for this are twofold: Firstly, the completely different
coverage metrics provided by the Model Coverage Tool and Reactis Tester should be mentioned.
Secondly, we observed that the set of blocks considered for the determination of coverage metrics
expands during the version change from Matlab R12 to R12.1 and R13 as well as from Reactis
Tester V2002 to V2003 ([16], [20]). This can lead to different, version-dependent, coverage figures
for the aforementioned coverage metrics at model level – which is not a satisfactory situation.
The existence of coverage criteria of various kinds in the Model Coverage Tool allows a sophisti-
cated consideration of the model coverage: The decision coverage metric (M_D1) makes a first
impression of the test quality with respect to model coverage, possible. The further metrics may
then contribute to the ascertainment of the causes of missing coverage. The different coverage crite-
ria used by Reactis Tester have a common conceptual basis, namely the decision or branching
points in Simulink and Stateflow. The three Reactis Tester coverage criteria used in the experi-
ments might together be compared with the decision and condition coverage of Model Coverage
Tool, however the set of model elements covered by Reactis Tester is smaller than that covered by
M_D1 and M_C1 of the Model Coverage Tool.

 ���������	���������!��������	����
����
������
Due to structural similarities between the model and the code generated from it, certain interrela-
tions between attained model and code coverage can be expected. We restricted the correlation
analysis to the Model Coverage Tool. The coverage criteria used by Reactis Tester were not in-
cluded in this analysis.
During the experiments a strong correlation between decision coverage (M_D1) at model level and
branch coverage (C_C1) at code level, which is also sometimes termed decision coverage in the
relevant literature (see e.g. [15]), was established. This correlation can be explained by considering
the structure, since code branches emerge on the decision points of the model. For this reason, the
branch coverage values of the code are close to the decision coverage values of the model.
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Figure 4. Comparison of M_D1 and C_C1 coverage
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Figure 4 illustrates the interrelation between M_D1 and C_C1 coverage at model and code level
using the example of a switch block. The switch block was realized in the course of code genera-
tion with TargetLink by means of an if-statement, i.e. a program branch, in the code. Thus, the
Model Coverage Tool and TESSY both calculate the same number of executions (645 times) for
one of both branches at this decision point.
Figure 5 graphs the correlation between the model coverage metric M_D1 and the code coverage
metrics C_C0 and C_C1. The M_D1 model coverage degrees from Table 2 (black-box tests) have
been entered on the x axis and the corresponding C_C0 and C_C1 code coverage degrees on the y
axis. Taking the individual scenarios into account, the calculated correlation between M_D1 and
C_C1 is 0.983 and the correlation between M_D1 and C_C0 0.973. The nearness of the correlation
figures to 1 indicates the close statistical interrelation between M_D1 coverage at model level and
C_C1 or C_C0 coverage at code level.
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Figure 5. Correlation between model and code coverage

Under the given constraints, the C_C1 code coverage can, then, be approximated with the M_D1
model coverage. Here, the M_D1 model coverage seems to permit an estimation of the code cover-
age to be expected.
The exact mathematical correlation varies depending on the transformation algorithms used during
the code generation. Thus, different code generators or different configurations of the code genera-
tor can lead to different realizations of one and the same model part (e.g. of a nested conditional
statement) and, consequently, to potentially different coverage degrees. In any case, the correlation
we gained in the experiments is stronger than the ’tenuous agreement’ stated in [1].

 � ��&�����������������
��������
�����������������
�����������
By deploying automatic test vector / test sequence generation tools we were able to optimize the
structural coverage reached during black-box testing on both model and code level. While Reactis
Tester works on model level and generates test sequences according to a number of tool-specific
coverage metrics, the ET system generates test sequences to reach high coverage on code level ac-
cording to the general and well-known code coverage metrics. Both tools are also different con-
cerning the algorithms they use for generating test sequences: While Reactis Tester exploits the
information on the structure of the test object and accomplishes a kind of ‘guided simulation’, the
ET system employs evolutionary algorithms to reach high ‘fitness values’ for the generated data.
Despite these differences Reactis Tester and the ET system have the same objective: The genera-
tion of test data to reach high structural coverage. The experiments described in this paper showed
that both of the tools are able to achieve this objective. The automatic test data generation mini-
mizes the effort of selecting test data covering the uncovered structural elements, which is indeed a
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very complex task. Consequently, the tester can concentrate on evaluating the results of the tests
executed using the generated test inputs.
The test vector / test sequence generators have been developed to optimize the test coverage con-
cerning their own coverage metrics, i.e. metrics provided by and implemented in these tools. How-
ever, our experiments showed that these tools can also be deployed to optimize coverage metrics
which are different from but structurally related to the metrics defined in the tools. The results are
certainly not as good as the results achieved for the ‘native’ metrics.
As shown in [10], random testing is not capable of reaching high structural coverage as an individ-
ual test approach. Only as a complementary approach to black-box testing could it improve the
coverage reached. Our experiments showed, however, that it is possible to reach coverage degrees
higher than 90% with test vector / test sequence generators.

#������
�����
As part of an experiment, three functional modules of an automotive body control system modeled
with Simulink/Stateflow were subjected to a model test, and the C code generated from these mod-
els was subjected to a code test. An analysis of the model and code coverage achieved during the
test showed that comparable model and code coverage measurements exist. The correlation be-
tween these measurements depends on the way (manual or automatic) that the model was trans-
formed into code. Furthermore, the deployment of automatic test vector / test sequence generation
tools led to optimized coverage on both model and code level. This reduces the test effort needed
for searching for appropriate test data to reach high coverage.
Model-based development makes it possible, besides the prevalent structural coverage measure-
ments at code level, to also determine structural test criteria at model level and integrate these into
the control and evaluation of the test process. Model coverage measurements can already be deter-
mined early in the development and test process, i.e. before the program code is available. The ad-
vantage of this procedure is that the relevant test activities are brought forward resulting in early
error detection and low-cost error correction.
Model coverage can be measured (as a background activity) during the execution of functional
model tests. By means of a rough analysis of the coverage reports created, the tester can establish
which functional parts have not yet been checked. New test scenarios must be created manually or,
as shown in the experiments, automatically in order to cover this functionality.
Model coverage degrees to be reached can (besides other criteria) be used to control the test depth
and as a (necessary) test criterion for the functional model test termination. Under certain condi-
tions they permit an estimation of the code coverage to be expected and can, in future, possibly
replace or complement certain structural test criteria at code level for the program parts created
using code generators.
A test strategy is effective if the tests included by that strategy are likely to reveal bugs in the test
object [7]. Effective test strategies should therefore combine different test approaches. According to
an effective test strategy, known from the classic software test [11], specification-based tests are
first carried out in order to check, whether the requirements have been implemented correctly. The
coverage reached by the specification-based tests is then measured, and additional white-box-tests
are defined and executed in order to cover the yet uncovered program elements. Based on the ex-
periments described in this paper and the availability of tools for measuring model coverage as well
as tools for automatic test vector / test sequence generation we suggest an adaptation of this strat-
egy to model-based testing as follows:

1. Specification-based tests are carried out at model level in order to check whether the re-
quirements have been modeled correctly.

2. The model coverage reached by the specification-based tests is measured.
3. Additional white-box-tests are manually defined or automatically generated in order to

cover the yet uncovered model elements. These tests are executed and evaluated.



13

4. The program code generated from the model is tested with the tests defined in step 1 in or-
der to check whether the requirements have been implemented correctly.

If requirements on high code coverage exist, the model-based effective test strategy proceeds as
follows:

5. The code coverage reached by the specification-based tests is measured.
6. Additional white-box-tests are manually defined or automatically generated in order to

cover the as yet uncovered program elements. These tests are executed and evaluated.
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