
1

Quality Week 1995

Test Case Design
Using Classification Trees

and the
Classification-Tree Editor CTE

Matthias Grochtmann
Joachim Wegener

Klaus Grimm
Daimler-Benz AG

Research and Technology
Alt-Moabit 96a

D-10559 Berlin, Germany
Tel: +49 30 39 982-229
Fax: +49 30 39 982-107

email: grochtm@dbresearch-berlin.de

Abstract

The systematic test is an inevitable part of the verification and validation process for software.
The most important prerequisite for a thorough software test is the design of relevant test cases,
since they determine the kind and scope and hence the quality of the test. The classification-tree
method and the graphical editor CTE (classification-tree editor) support the systematic design
of black-box test cases. The classification-tree method is an approach to partition testing which
uses a descriptive tree-like notation and which is especially suited for automation. Method and
tool have already been tried out successfully on actual examples in various divisions of the Daim-
ler-Benz Group. Since the CTE has been so well received in in-house practice, it is now trans-
formed into a product version with a number of additional features found to be useful during the
practical trials.

2

1. Introduction

The systematic test is an inevitable part of the verification and validation process for software.
Testing is aimed at finding errors in the test object and giving confidence in its correct behavior
by executing the test object with selected input values.

The overall testing process can be structured into the following central test activities: During test
case determination the input situations to be tested are defined. Concrete input values which meet
the test case conditions are determined during test data generation. For these test data the expected
outputs are then predicted. The test object is run with the test data and thus the actual output values
are produced. The test results are determined by comparing expected and actual values. Addition-
ally, monitoring can be used to obtain information about the behavior of the test object during
test execution.

The most important prerequisite for a thorough software test is the design of relevant test cases,
since they determine the kind and scope of the test.

2. State of the Art

As experience shows, methods and tools are extremely helpful in real-world test problems (De-
Millo et al., 1987; Graham, 1991). Methods and tools for white-box testing (i.e. testing based on
the structure of the program itself) are widely used in practice. A typical white-box approach is
branch testing which is supported by coverage analyzers.

However, there is a lack of methods and tools for test case design using a black-box approach (i.e.
testing based on the functional specification). Thus the classification-tree method and the classifi-
cation-tree editor were developed by Daimler-Benz Research to improve this situation.

3. The Classification-Tree Method

The classification-tree method (Grochtmann and Grimm, 1993) is a special approach to (black-
box) partition testing partly using and improving ideas from the category-partition method de-
fined by Ostrand and Balcer (1988).

By means of the classification-tree method, the input domain of a test object is regarded under
various aspects assessed as relevant for the test. For each aspect, disjoint and complete classifica-
tions are formed. Classes resulting from these classifications may be further classified – even re-
cursively. The stepwise partition of the input domain by means of classifications is represented
graphically in the form of a tree. Subsequently, test cases are formed by combining classes of
different classifications. This is done by using the tree as the head of a combination table in which
the test cases are marked. When using the classification-tree method, the most important source
of information for the tester is the functional specification of the given test object. A major advan-
tage of the classification-tree method is that it turns test case design into a process comprising
several structured and systematized parts – making it easy to handle, understandable and also doc-
umentable.

The use of the classification-tree method will be explained using a simple example. The test ob-
ject is a Computer Vision System which should determine the size of different objects (Figure

3

1). The possible inputs are various building blocks. Appropriate aspects in this particular case
would be, for example, the size, the colour and the shape of a block (Figure 2).

The classification based on the aspect ‘colour’ leads, for example, to a partition of the input do-
main into red, green and blue blocks, the classification based on the shape produces a partition
into circular, triangular and square blocks. An additional aspect is introduced for the triangle
class: the shape of triangle. The various classifications and classes are noted as classification tree
(Figure 3). Some possible test cases are marked as examples in the combination table associated
with the tree. Test case three, for instance, describes the test with a small blue isosceles triangle.

The classification-tree method is especially suited for automation since (a) it decomposes the test
case design process into several steps which can be automated individually allowing the tool to
appropriately guide the user and (b) it offers a graphical notation well suited for visualization in
a modern graphical user interface.

large

Figure 1: Computer Vision System

Size

Colour

Shape

Aspects Input Domain

Figure 2: Aspects for Classification

4

size colour shape

red green bluesmall large circle triangle square

shape of

equilateral isosceles scalene

1

2

3

triangle

Figure 3: Classification Tree

4. The Classification-T ree Editor CTE

The classification-tree editor CTE is based on the classification-tree method and supports sys-
tematic and efficient test case determination for black-box testing (Grochtmann et al., 1993). The
two main phases of the classification-tree method – design of a classification tree and definition
of test cases in the table – are both supported by the tool. For each phase a suitable working area
is provided.

The classification-tree editor CTE uses a separate window on the screen (Figure 4). In the upper
part of the window there is a drawing area in which the user can build up a classification tree inter-
actively (1). The lower part of the window depicts a corresponding table in which test cases can
be marked interactively (2). Each test case row is numbered (3). The menu bar (4) offers access
to several pull-down menus which provide various commands, e.g. for saving, editing and print-
ing. The current working mode of the CTE is displayed in the status area (5). Pop-up menus are
used to choose element-specific commands in the working area (6).

To give the user optimal support, editing is done in a syntax-directed and object-oriented way.
Several functions are performed automatically. These include drawing of connections between
tree elements, updating the combination table after changes in the tree and checking the syntacti-
cal consistency of table entries.

The CTE offers features which allow large-scale classification trees to be structured in order to
support the test case design for large testing problems efficiently. This can be illustrated, for ex-
ample, in Figure 5 where a screen dump of the CTE used for the test of a part of the CTE itself

5

Figure 4: Classification-Tree Editor

(1)

(2)
(3)

(4)

(5)

(6)

is shown. The test object is a procedure ‘is_line_covered_by_rectangle’ which should determine
whether or not a distinct line is covered by a given rectangle. This procedure is used in the CTE
for determining the need for redrawing parts of the tree in case of window exposure events.

The main window (in the background) shows that the input domain of the test object is distin-
guished for instance according to the existence and degree of coverage and according to the posi-
tions of the end points P1 and P2 of the line. Refinement symbols are used at various places, in
order to make more detailed differentiations in separate windows. For example, the child window
in the foreground shows that the case that P1 lies outside the rectangle is further distinguished
according to the position of P1 with respect to the rectangle and according to the distance of P1
from the rectangle. Other windows can be opened to show the complete tree and table. In this
example, the test case determination process led to 49 test cases and one error in the test object
could be detected.

As test documentation plays an important role in systematic testing, the CTE offers suitable sup-
port for this activity. For example, the test case design can be documented easily by printing out
the trees and tables. Furthermore, the tool can automatically generate text versions of the test
cases, based on the test case definition in the table. For example, the text version of test case 45
of the example is shown as:

6

Figure 5: CTE Used for Large Testing Problem

Coverage: no
Minimum distance line – rectangle: very small

Position of P1: P1 outside rectangle
Position of P1 with respect to rectangle: below and right
Distance of P1 from rectangle: other

Position of P2: P2 outside rectangle
Position of P2 with respect to rectangle: left
Distance of P2 from rectangle: other

Course of line: slanting
Direction of line (P1 –> P2): bottom right –> top left
Gradient of line: medium

On the one hand these text versions serve as documentation, on the other hand they provide a basis
for the subsequent activities of software testing like the generation of concrete test data.

The first version of the CTE was developed as an in-house tool on VAXstation under VMS and
OSF/Motif written in C. It is also available for Ultrix, HP UX, SUN OS and Solaris.

5. Practical Experience

Until now 21 applications of method and tool have been performed. Most of them were carried
out within actual projects of various divisions of the Daimler-Benz Group. Examples for such

7

real-world applications are a control system for the airfield lighting of an international airport,
an identification system for automatic mail sorting machines and an integrated ship management
system. The results observed were promising and successful, and consequently, some divisions
have now started to use the method and tool on a regular basis in larger projects. In some cases
the mandatory use of the classification-tree method and the CTE was made part of division-spe-
cific development standards.

The most important feature of the classification-tree method was observed to be a good error
detection rate. For example, in one module test for the identification system the number of test
cases could be halved compared to a previously used set of test cases due to existing redundancy
and at the same time new errors were found. A detailed description of some results of the practical
applications of the classification-tree method and the CTE can be found in (Grochtmann and
Grimm, 1993) as well as (Grimm and Grochtmann, 1994).

A first approach to a testing strategy aimed primarily at interactive business software giving some
rules to apply method and tool efficiently in this field is described by Grochtmann (1994). It was
developed from experience gained in the process of test case determination for parts of a manage-
ment system for a large educational institution.

Method and tool are not only applicable to software – recently a pure hardware system was suc-
cessfully tested using method and tool: Test cases for the culling oversize system of an automatic
mail sorting machine were generated, with real letters and postcards forming the corresponding
test data.

During the trials, the test documentation generated proved to be appropriate and useful. It was
especially helpful for the following test activities like test data generation. The fact that the
method guides and supports testers but does not limit them was also positively judged by users.
Moreover, in most cases the specification of the system under test could be improved, too.

However, experience showed also that a large, real-world system cannot be tested reasonably
with a single classification-tree, as such a tree would become too large to handle. Therefore, the
functionality of the system under test has to be divided into several separate test objects. This has
to be done in such a way that each of the resulting test objects can be tested individually by means
of the classification-tree method and that by testing all test objects the complete system is tested
thoroughly (Grochtmann, 1994).

In general, it seems possible to achieve savings of up to 50% when the classification-tree method
and the CTE tool are used (Wegener et al., 1994).

6. The Upcoming CTE Product

Since the CTE was well received in in-house practice, it is now being transformed into a product
version. In this respect the trials already provided some valuable information on ways of further
improving the CTE. Some of them are now realized in the first product version.

Important new features in the CTE product are (see Figure 6):

– In addition to several editing commands for the tree a number of editing commands for the
combination table are available (1). They allow, for example, to easily generate a number
of related test cases.

8

Figure 6: Features of the CTE Product Version

(1)

(2)

(3)

(4)

(5)

(6)

(7)

– Several consistency checks are available, e.g. checking for unused classes or for redundant
test cases (2). In this way, some basic completeness and efficiency criteria for a thorough
test can be guaranteed.

– In addition to the test case number the user can give each test case a descriptive name (3).
During the practical trials it was found that the introduction of “meta test cases” which com-
prise a group of related test cases testing the same test idea is a powerful construction princi-
ple for the building of a large set of test cases. This can be documented readily by naming
related test cases appropriately.

– A tree library can be used to save and later reuse parts of classification trees (4). An orga-
nization can use this feature to accumulate its testing knowledge gained during different
projects and to reuse it later in new applications.

9

– Measures corresponding to the minimality and the maximality criterion are calculated au-
tomatically (5). The minimality criterion says that each class has to be used in at least one
test case, the maximality criterion means that each possible combination of classes has to
be used as a test case. The minimality criterion should always be fulfilled in a thorough test
whereas, generally, there is no need to fulfil the maximality criterion as the number of nec-
essary cases grows fast in real test problems and – as experience shows – normally only
a limited number of combinations is required for a thorough test. The CTE calculates the
minimum number of test cases which are necessary to fulfill the minimal criterion and the
number of all different combinations of classes (maximality criterion). These measures
help the tester to gain information on the complexity of the tree and thus the test problem.

– Tree and table elements can be annotated with explanatory texts providing additional docu-
mentation (6). Using these annotations the tester can, for example, express the reasoning
behind the tree and table elements. Optionally, the user can request the CTE to display/print
tree elements and test cases with special markings which show the existence of annotated
texts or specifications (7).

The product version will be available in summer of 1995 for VMS, HP UX, SUN OS and Solaris.
A PC/Windows version is planned for the end of 1995.

7. Conclusions

The classification-tree method and the CTE proved to be of high practical value for systematic
test case design. A wider availability of these research results will be given by the CTE product
version.

For the next versions of the CTE it is planned to enhance the functionality of the tool further. For
example, an automatic generation of test cases in the table according to predefined combination
rules or even the generation of complete classification trees from formal specifications is
planned.

Furthermore, the CTE is now also an integral part of the overall computer-aided test system
TESSY (Wegener and Pitschinetz, 1995). TESSY is under development by Daimler-Benz Re-
search in Berlin in cooperation with divisions of the Daimler-Benz Group. It will give testers suit-
able support not only for test case determination by means of the CTE but also for all other central
activities of software testing such as test execution, monitoring and test evaluation.

In the future, research will focus on the test of large, distributed, parallel and real-time systems
to further improve the support in these important areas of testing. Furthermore, regarding the
growing importance of formal methods in the development of high-quality software, it is planned
to combine the strengths of formal methods with systematic testing.

8. References

DeMillo, R.A., McCracken, W.M., Martin, R.J., Passafiume, J.F. (1987) Software Testing and
Evaluation. Benjamin/Cummings Publishing Company, Menlo Park, CA, 1987.

10

Graham, D.R. (Ed.) (1991) Computer-Aided Software Testing: The CAST Report. Unicom
Seminars Ltd., Middlesex, UK, 1991.

Grimm, K., Grochtmann, M. (1994) A New Approach to Systematic Testing of Safety-Related
Computer Systems. International Conference on Computer Safety, Reliability and Security
(SAFECOMP’94), 23-26 October 1994, Anaheim, California, USA.

Grochtmann, M., Grimm, K. (1993) Classification Trees for Partition Testing. Software Testing,
Verification & Reliability, Volume 3, Number 2, June 1993, Wiley, pp. 63-82.

Grochtmann, M., Grimm, K., Wegener, J. (1993) Tool-Supported Test Case Design for Black-
Box Testing by Means of the Classification-Tree Editor. EuroSTAR ’93 – 1st European In-
ternational Conference on Software Testing, Analysis and Review, 25 - 28 October 1993, Lon-
don, UK, pp. 169-176.

Grochtmann, M. (1994) Test Case Design Using Classification Trees. Proceedings of STAR ’94,
8-12 May 1994, Washington, DC, pp. 93-117.

Ostrand, T., Balcer, M. (1988) The Category-Partition Method for Specifying and Generating
Functional Tests. Communications of the ACM, Volume 31, Number 6, June 1988, pp.
676-686.

Wegener, J., Pitschinetz, R. (1995) Tessy – An Overall Unit Testing Tool. Eighth International
Software Quality Week (QW’95), 30 May - 2 June 1995, San Francisco, California, USA, in
this volume.

Wegener, J., Pitschinetz, R., Grimm, K., Grochtmann, M. (1994) Tessy – Yet Another Computer-
Aided Software Testing Tool? EuroSTAR ’94 – 2nd European International Conference on
Software Testing, Analysis and Review, 10 - 13 October 1994, Brussels, Belgium, pp.
36/1-36/13.

