Quality Week 1995

Test Case Design
Using Classification Trees
and the
Classification-Tree Editor CTE

Matthias Grochtmann
Joachim Wegener
Klaus Grimm

Daimler-Benz AG
Research and Technology
Alt-Moabit 96a
D-10559 Berlin, Germany
Tel: +49 30 39 982-229
Fax: +49 30 39 982-107

email: grochtm@dbresearch-berlin.de

Abstract

The systematic test is an inevitable part of the verification and validation process for software.
The most important prerequisite farthorough software test is the design of relevant test cases,
sincethey determine the kind and scope and hence the quality of the test. The classification-tree
method and the graphical editor CTE (classification-tree editor) support the systematic design
of black-box test cases. The classification-tree method is an approach to partition testing which
usesa descriptive tree-like notation and which is especially suited for automation. Method and
tool have already been tried out successfully on aetxeinples in various divisions of the Daim
ler-Benz Group. Since the CTE has been so well received in in-house practice, it is now trans-
formedinto a product version with a number of additional features found to be useful during the
practical trials.

1. Introduction

The systematic test is an inevitable part of the verification and validation process for software.
Testingis aimed at finding errors in the test objant giving confidence in its correct behavior
by executing the test object with selected input values.

Theoverall testing processan be structured into the following central test activities: During test
casedetermination the input situations to be tested are defined. Concrete input values which meet
thetest case conditions are determined during test data generation. For these test data the expected
outputs are then predicted. The test object is run with the test data and thus theugothiehlues

are produced. The test results are determined by comparing expected and actual values. Addition
ally, monitoring can be used to obtain information about the behavior of the test object during
test execution.

The most important prerequisite farthorough software test is the design of relevant test cases,
since they determine the kind and scope of the test.

2. State of the Art

As experience showsnethods and tools are extremely helpful in real-world test problems (De
Millo et al., 1987; Graham, 1991). Methods and tools for white-box testing (i.e. testing based on
the structure of the program itself) are widely used in practice. A typibae-box approach is
branch testing which is supported by coverage analyzers.

However there is a lack of methods and tools for teste design using a black-box approach (i.e.
testingbased on the functional specification). Thus the classification-tree metlddtie classHi
cation-tree editor were developed by Daimler-Benz Research to improve this situation.

3. The Classification-Tree Method

The classification-tree method (Grochtmann and Grimm, 1993) is a special approach to (black-
box) partition testing partly using and improving ideas from the category-partition method de-
fined by Ostrand and Balcer (1988).

By means of the classification-tree method, the input domain of a test object is regarded under
variousaspects assessed as relevant for the test. For each aspect, disjoint and complete classifica
tionsare formed. Classes resulting from these classifications may be further classifiede- even
cursively. The stepwise partition of the input domain by means of classifications is represented
graphically in the form of a tree. Subsequently, test cases are formed by combining classes of
differentclassifications. This is done by using the tree as the head of a combination table in which
thetest cases are marked. When using the classification-tree method, the most important source
of informationfor the tester is the functional specification of the given test object. A major-advan
tage of the classification-tree method is that it turns test case design into a process comprising
severalstructured and systematized parts — making it easy to handle, understandable do also
umentable.

Theuse of the classification-tree method will be explained using a simple example. The test ob
ject is a Computer Vision System which should determine the size of different objects (Figure

1). The possible inputs are various building blocks. Appropriate aspects in this particular case
would be, for example, the size, the colour and the shape of a block (Figure 2).

The classification based on the aspect ‘coldeads, for example, to a partition of the input do

main into red, green and blue blocks, the classification based on the shape produces a partition
into circular, triangular and square blocks. An additional aspect is introduced for the triangle
class:the shape of triangle. Tharious classifications and classes are noted as classification tree
(Figure3). Some possibleest cases are marked as examples in the combination table associated
with the tree. €st case three, for instance, describes the test with a small blue isosceles triangle.

The classification-tree method is especially suited for automation since (a) it decomposes the test
casedesign process into several steps which can be automated individually alfoeviogl to
appropriatelyguide theuser and (b) it &rs a graphical notation well suited for visualization in

a modern graphical user interface.

large v/

Figure 1: Computer Vision System

Aspects Input Domain

P ANE
A‘AO

<1 e

i O 0O

Figure 2: Aspects for Classification

/T\

size colour shape
small large red green blue circle triangle square

shape of

triangle

equilateral isosceles scalene

2 1 ° *—
3

t ?

Figure 3: Classification Tree

4. The Classification-T ree Editor CTE

The classification-tree editor CTE is based on the classification-tree method and supports sys-
tematicand eficient test case determination for black-box testing (Grochtmann et al., T9@3).

two mainphases of the classification-tree method — design of a classification tree and definition

of test cases in the table — are both supported by the tool. For each phase a suitable working area
is provided.

The classification-tree editor CTE uses a separate winmlothe screen (Figure 4). In the upper
partof the window there is a drawing area in whilsh user can build up a classification tree mter
actively (1). The lower part of the window depicts a corresponding table in which testeases
be marked interactively (2). Each test case row is numbered (3). The menu béer&nofess

to several pull-dowmenus which provide various commands, e.g. for saving, editing and print
ing. The current working mode of the CTE is displayed in the status ard?ofsup menus are
used to choose element-specific commands in the working area (6).

To give the user optimal support, editing is done in a syntax-directed and object-oriented way.
Several functions are performed automatically. These include drawing of connections between
treeelements, updating the combination table after changes in the tree and checking the syntacti
cal consistency of table entries.

The CTE ofers features which allow Ige-scale classification trees to be structured in order to
supportthe test case design fordartesting problemsfefiently. This can be illustrated, for ex
ample,in Figure 5 where a screen dumpioé CTE used for the test of a part of the CTE itself

Eile Tree Edit Measurements gptinns

Standard

(5)

Building_blocks

red green bilue circle triangle

Classification I shape of triangle

Create Priclass .

Text ... refinerment ...

equilateral isosceles scalene

parent

Suggest

Rename ...

Facing (6)
it

Figure 4: Classification-Tree Editor

is shown. The test object is a procedure ‘is_line_covered_by_rectangle’ which dbatarithine
whetheror not a distinct line is coverdsy a given rectangle. This procedure is used in the CTE
for determining the need for redrawing parts of the tree in case of window exposure events.

The main window (in the background) shows that the input domain of the test object is distin-
guishedfor instance according to the existence and degree of coverage and adoottu#ngpsi

tionsof the end points P1 and P2 of the line. Refinement symbols are used at various places, in
orderto make more detailed tifrentiations irseparate windows. For example, the child window

in the foreground shows that the case that P1 lies outside the rectangle is further distinguished
accordingto the position of P1 with respect to the rectangle and according to the distance of P1
from the rectangle. Other windows can be opened to show the complete tree and table. In this
examplethe test case determination process led to 49 test cases and one error in the test object
could be detected.

As test documentation plays an important role in systematic testing, the &f&safitable sup

port for this activity For example, the test case design can be documented easily by jpunting

the trees and tables. Furthermore, the tool can automatically generate text versions of the test
casespased on the test case definition in the table. For example, the text version of test case 45
of the example is shown as:

Daimler—Benz Classification

ﬂeasurements gptiuns

5 _line_cowveredD

position of P1 position of p2

F1 inside rectangle F2 outside rectangle F2 inside rectangle

L * ile Tree Edit Options

Standard

complete one point - ho point

F1 outside rectangle

pos P1 to rectangle distance P11 —rectang.

; ove and right left right below and left below below and right close to rectangle other

S

i

Figure 5: CTE Used for Large Testing Problem

Coverage: no
Minimum distance line — rectangle: very small
Position of P1: P1 outside rectangle
Position of P1 with respect to rectangle: below and right
Distance of P1 from rectangle: other
Position of P2: P2 outside rectangle
Position of P2 with respect to rectangle: left
Distance of P2 from rectangle: other
Course of line: slanting
Direction of line (P1 —> P2): bottom right —> top left
Gradient of line: medium

Onthe one hand these text versions serve as documentation, on the other hprakitieya basis
for the subsequent activities of software testing like the generation of concrete test data.

Thefirst version of the CTE was developasl an in-house tool orAXstation under VMS and
OSF/Motif written in C. It is also available for Ultrix, HP UX, SUN OS and Solaris.

5. Practical Experience

Until now 21 applications of method atabl have been performed. Most of them were carried
out within actual projects of various divisions of the Daimler-Benz Group. Examples for such

real-world applications are a control system for the airfield lighting of an international airport,
anidentification system for automatic mail sorting machines and an integrated ship management
system.The results observed were promising and successful, and consegamdydivisions
havenow started to use the method and tool on a regular basigen fapjects. In someases

the mandatory use dhe classification-tree method and the CTE was made part of division-spe
cific development standards.

The most important feature of the classification-tree method was observed to be a good error
detection rate. For example, in one module test for the identification system the number of test
casegould be halved compared to a previously used set of test cases due to existing redundancy
andat the same time new errors were found. A detailed descriptgonaé results of the practical
applications of the classification-tree method and the CTE can be found in (Grochtmann and
Grimm, 1993) as well as (Grimm and Grochtmann, 1994).

A first approach to a testing strategy aimed primarily at interactive busioiéggre giving some
rulesto apply method and toolfefiently in this field is described by Grochtma(i®94). It was
developedrom experience gained in the proce$sest case determination for parts of a manage
ment system for a large educational institution.

Methodand tool are not only applicable to software — recently a pure hardysiesn was sdc
cessfullytested using method and too€st cases for the culling oversize system cduaiomatic

mail sorting machine were generated, with real letters and postcards forming the corresponding
test data.

During the trials, the test documentation generated proved to be appropriate and useful. It was
especially helpful for the following test activities like test data generation. The fact that the
methodguides andgupports testers but does not limit them was also positively judged by users.
Moreover, in most cases the specification of the system under test could be improved, too.

However, experience showed also that a large, real-world system cannot be tested reasonably
with a single classification-tree, as such a tree would become ¢mottahandle. Therefore, the
functionality of the system under test has to be divided into several separate test objetiss This

to be done in such a way that each of the resulting test objects can be tested individually by means
of the classification-tree method and that by testing all test objects the complete system is tested
thoroughly (Grochtmann, 1994).

In general, it seems possible to achieve savings of up to 50% when the classification-tree method
and the CTE tool are used (Wegener et al., 1994).

6. The Upcoming CTE Product

Sincethe CTE was well received in in-hougeactice, it is now being transformed into a product
version.In this respect the trials already provided some valuable information on wiaythef
improving the CTE. Some of them are now realized in the first product version.

Important new features in the CTE product are (see Figure 6):

— In addition to several editing commands for the tree a number of editing commands for the
combinationtable are available (1). They allpfer example, to easily generate a number
of related test cases.

[
CTE: Edit text

File

of less than 5 cl,

(6)

Enall building blocks have a volume

File Tree Edit Heasurements Options

Filter (4)

Sgrochtmstreel ibs shapes/ *, tre |

Directories Select tree

Standard

circle,tre

square, tre

triangle.tre
Help

information B

Building_blocks i/
Ttems
Building_blocks:
Urmarked class “yellow”,]
(2) colour
TESTCASE-warnings:
.Iarge red green blue yellow circle triancle Srjuare
Equal testcases: 1 - 11, (7)
el
] . MINFALL & 0§
ecjuilateral isosceles scalens WFALL = &
L
te 001 smal f > * f s
to 002: (3) * I\ 5
e 003: . 4 & ()
e 004: L 4 L 4
te 00%: 4 »
te 006: large L &
e 007: L 4 . 4
L 4 &
e O I L .
te 010 Testoazes »
te 011 Insert ... H ?
te 01
Copy I | |
RV — I—
Delete 1
Text ... ()

Figure 6: Features of the CTE Product Version

— Severakonsistency checks are available, e.g. checking for unused classes or for redundant
testcaseq2). In this waysome basic completeness arftciefncy criteria for a thorough
test can be guaranteed.

— In addition to the test case number the user can give each test case a descriptive name (3).
During the practical trials it was found that the introduction of “meta test cases” wdmeh
prise a group of related test cases testing the same test idea is a powerful construction princi
ple for the building ofa lage set of test cases. This can be documented readily by naming
related test cases appropriately.

— Atree library can be used to save and later reuse parts of classification trees (4a-An or
nization can use this feature to accumulate its testing knowledge gained during different
projects and to reuse it later in new applications.

— Measuregorresponding to the minimality and the maximality criterion are calculated au
tomatically(5). The minimality criterion says that each class has to be used in at least one
testcase, the maximality criterion means that each possible combination of classes has to
beusedas a test case. The minimality criterion should always be fulfilled in a thorough test
whereasgenerally there is naeed to fulfil the maximality criterion as the number of-nec
essary cases grows fast in real test problems and — as experience shows — normally only
alimited number of combinations is required for a thorough test. The CTE calculates the
minimum number of test cases which are necessary to fulfill the minimal criterion and the
number of all different combinations of classes (maximality criterion). These measures
helpthe tester to gain information on the complexity of the tree and thus the test problem.

— Treeand table elements can be annotated with explanatory texts providing additional docu
mentation (6). Using these annotations the tester can, for example, express the reasoning
behindthe tree and table elements. Optionalte user can request the CTE to display/print
treeelements and test cases with special markings vehiotv the existence of annotated
texts or specifications (7).

The product version will be available in summer of 1995 for VMS, 3 SUN OS and Solaris.
A PC/Windows version is planned for the end of 1995.

7. Conclusions

The classification-tree method and the CTE proved to be of high practical valsystematic
testcase design. A wider availability of these research results will be given by the CTE product
version.

Forthe next versions of theTE it is planned to enhance the functionality of the tool furffar
examplean automatic generation of test cases irtdbée according to predefined combination
rules or even the generation of complete classification trees from formal specifications is
planned.

Furthermore, the CTE is now also an integral part of the overall computer-aided test system
TESSY (Wegener and Pitschinetz, 1995). TESSY is under development by Daimler-Benz Re-
searchn Berlin in cooperation with divisionsf the DaimlesBenz Group. It will give testers suit
ablesupport not only for test case determination by means of the CTdsbubr all other central
activities of software testing such as test execution, monitoring and test evaluation.

In the future, research will focus on the teklarge, distributed, parallel and real-time systems

to further improve the support in these important areas of testing. Furthermore, regarding the
growingimportance of formal methodis the development of high-quality software, it is planned

to combine the strengths of formal methods with systematic testing.

8. References

DeMillo, R.A., McCracken, W.M., Martin, R.J., Passafiume, J.F. (1987) Software Testing and
Evaluation. Benjamin/Cummings Publishing Company, Menlo Park, CA, 1987.

Graham, D.R. (Ed.) (1991) Computer-Aided Software Testing: The CAST Répocom
Seminars Ltd., Middlesex, UK, 1991.

Grimm, K., Grochtmann, M. (1994) A New Approach to Systemagisting of Safety-Related
Computer Systems. International Conference on Computer Safety, Reliability and Security
(SAFECOMP’94), 23-26 October 1994, Anaheim, California, USA.

GrochtmannM., Grimm, K. (1993) Classificationr&es for Partitiodesting. Software dsting,
Verification & Reliability, Volume 3, Number 2, June 1993, Wiley, pp. 63-82.

Grochtmann, M., Grimm, K., Wegener, J. (1993) Tool-Supported Test Case Design for Black-
Box Testing by Means of the Classification-Tree Editor. EuroSTAR '93 — 1st European In-
ternationalConference on Softwareesting, Analysis and Revie®5 - 28 October 1993, Len
don, UK, pp. 169-176.

GrochtmannM. (1994) Bst Case Design Using Classificatiaeds. Proceedings of AR '94,
8-12 May 1994, Washington, DC, pp. 93-117.

Ostrand, T., Balcer, M. (1988he Category-Partition Method for Specifying and Generating
Functional Tests. Communications of the ACM, Volume 31, Number 6, June 1988, pp.
676-686.

Wegener, J., Pitschinetz, R. (1995) Tessy — An Overall Unit Testing Tool. Eighth International
SoftwareQuality Week (QW’95), 30 May 2 June 1995, San Francisco, California, USA, in
this volume.

Wegener)J., Pitschinetz, R., Grimm, K., Grochtmann, M. (199¢9s¥ — ¥t Another Computer
Aided Software Testing Tool? EuroSTAR '94 — 2nd European International Conference on
Software Testing, Analysis and Review, 10 - 13 October 1994, Brussels, Belgium, pp.
36/1-36/13.

10

